Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The asymmetric impacts of international agricultural trade on water use scarcity, inequality and inequity

Abstract

Freshwater is closely interconnected with multiple sustainable development goals (SDGs). Virtual water transfer associated with agricultural trade may help to mitigate water scarcity (SDG6). However, the resulting impacts on water scarcity distribution among income groups (SDG1) and subsequent effects on water use inequality and inequity (SDG10) remain largely unclear. Here we develop an integrated framework to reveal the asymmetric impacts of international agricultural trade on water use scarcity, inequality and inequity between and within developing and developed countries. We find that although agricultural trade generally relieves water scarcity globally, it disproportionately benefits the rich and widens both the water scarcity and inequity gap between the poor and the rich. Notably, in developing countries, the population (35%) suffering from both increased water scarcity and inequity are the poorest group (per capita income is 16% lower than average), whereas the relatively poor (13% population) in developed countries often simultaneously benefit from decreased water scarcity and reduced inequity synergies. Our results thereby highlight striking asymmetric and generally more favourable trade-induced water impacts for developed countries, urging future water and trade policies striving for a better balance across multiple critical SDGs and achieving sustainable development for all.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric change of water scarcity embodied in international agricultural trade across developing/developed countries and populations.
Fig. 2: Asymmetric changes of water use inequality and inequity embodied in international agricultural trade across developing/developed countries and populations.
Fig. 3: Synergies and trade-offs between water scarcity, inequality and inequity embodied in international agricultural trade.
Fig. 4: Relative importance of crop-specific contribution to the change of water scarcity, inequality and inequity due to international agricultural trade for eight selected countries.
Fig. 5: Relative importance of trading-partner-specific contribution to the change of water scarcity, inequality and inequity due to international agricultural trade for eight selected countries.

Similar content being viewed by others

Data availability

Data used to perform this work can be found in the Supplementary Information. Numerical results for Figs. 15 are provided with this paper as Source Data, any further data that support the main findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

Computer code or algorithm used to generate results that are reported in the paper and central to the main claims are available from the corresponding authors upon request.

References

  1. Wang, M. R. et al. Accounting for interactions between sustainable development goals is essential for water pollution control in China. Nat. Commun. 13, 730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ma, T. et al. Pollution exacerbates China’s water scarcity and its regional inequality. Nat. Commun. 11, 650 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sun, S. et al. Unraveling the effect of inter-basin water transfer on reducing water scarcity and its inequality in China. Water Res. 194, 116931 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Fischer, C., Aubron, C., Trouve, A., Sekhar, M. & Ruiz, L. Groundwater irrigation reduces overall poverty but increases socioeconomic vulnerability in a semiarid region of southern India. Sci. Rep. 12, 8850 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 6, eaaz6031 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bleischwitz, R. et al. Resource nexus perspectives towards the United Nations sustainable development goals. Nat. Sustain. 1, 737–743 (2018).

    Article  Google Scholar 

  7. The Sustainable Development Goals Report (United Nations, 2022); https://www.un.org/development/desa/dspd/2022/07/sdgs-report/

  8. Wiedmann, T. & Lenzen, M. Environmental and social footprints of international trade. Nat. Geosci. 11, 314–321 (2018).

    Article  CAS  Google Scholar 

  9. Liu, X. et al. Can virtual water trade save water resources? Water Res. 163, 114848 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Deng, J. et al. The impact of water scarcity on Chinese inter-provincial virtual water trade. Sustain. Prod. Consump. 28, 1699–1707 (2021).

    Article  Google Scholar 

  11. D’Odorico, P. et al. Global virtual water trade and the hydrological cycle: patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 14, 053001 (2019).

    Article  Google Scholar 

  12. Chapagain, A. K., Hoekstra, A. Y. & Savenije, H. H. G. Water saving through international trade of agricultural products. Hydrol. Earth Syst. Sci. 10, 455–468 (2006).

    Article  Google Scholar 

  13. Hoekstra, A. Y. & Hung, P. Q. Globalisation of water resources: international virtual water flows in relation to crop trade. Glob. Environ. Change 15, 45–56 (2005).

    Article  Google Scholar 

  14. Liu, W. F. et al. Savings and losses of global water resources in food-related virtual water trade. Wiley Interdiscip. Rev.: Water 6, e1320 (2019).

    Article  Google Scholar 

  15. Konar, M., Dalin, C., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Temporal dynamics of blue and green virtual water trade networks. Water Resour. Res. 48, W07509 (2012).

    Article  Google Scholar 

  16. Mekonnen, M. M. & Hoekstra, A. Y. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol. Earth Syst. Sci. 14, 1259–1276 (2010).

    Article  Google Scholar 

  17. Mekonnen, M. M. & Hoekstra, A. Y. The green, blue and grey water footprint of crops and derived crop products. Hydrol. Earth Syst. Sci. 15, 1577–1600 (2011).

    Article  Google Scholar 

  18. O’Bannon, C., Carr, J., Seekell, D. A. & D’Odorico, P. Globalization of agricultural pollution due to international trade. Hydrol. Earth Syst. Sci. 18, 503–510 (2014).

    Article  Google Scholar 

  19. Pfister, S., Bayer, P., Koehler, A. & Hellweg, S. Environmental impacts of water use in global crop production: hotspots and trade-offs with land use. Environ. Sci. Technol. 45, 5761–5768 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Lenzen, M. et al. International trade of scarce water. Ecol. Econ. 94, 78–85 (2013).

    Article  Google Scholar 

  21. Zhao, X. et al. Physical and virtual water transfers for regional water stress alleviation in China. Proc. Natl Acad. Sci. USA 112, 1031–1035 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dalin, C., Wada, Y., Kastner, T. & Puma, M. J. Groundwater depletion embedded in international food trade. Nature 543, 700–704 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Qin, Y. et al. Snowmelt risk telecouplings for irrigated agriculture. Nat. Clim. Change 12, 1007–1015 (2022).

    Article  Google Scholar 

  24. Seekell, D. A., D’Odorico, P. & Pace, M. L. Virtual water transfers unlikely to redress inequality in global water use. Environ. Res. Lett. 6, 024017 (2011).

    Article  Google Scholar 

  25. Carr, J. A., Seekell, D. A. & D’Odorico, P. Inequality or injustice in water use for food? Environ. Res. Lett. 10, 024013 (2015).

    Article  Google Scholar 

  26. Chen, W. M., Kang, J. N. & Han, M. S. Global environmental inequality: evidence from embodied land and virtual water trade. Sci. Total Environ. 783, 146992 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Li, H., Liu, X. M., Wang, S. & Wang, Z. H. Impacts of international trade on global inequality of energy and water use. J. Environ. Manage. 315, 115156 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Chancel, L. Global carbon inequality over 1990–2019. Nat. Sustain. 5, 931–938 (2022).

    Article  Google Scholar 

  29. Diffenbaugh, N. S. & Burke, M. Global warming has increased global economic inequality. Proc. Natl Acad. Sci. USA 116, 9808–9813 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tong, K. et al. Measuring social equity in urban energy use and interventions using fine-scale data. Proc. Natl Acad. Sci. USA 118, e2023554118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kummu, M., Taka, M. & Guillaume, J. H. A. Data descriptor: gridded global datasets for gross domestic product and human development index over 1990–2015. Sci. Data 5, 180004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kakwani, N., Wagstaff, A. & vanDoorslaer, E. Socioeconomic inequalities in health: measurement, computation, and statistical inference. J. Econom. 77, 87–103 (1997).

    Article  Google Scholar 

  33. Wagstaff, A., Paci, P. & Vandoorslaer, E. On the measurement of inequalities in health. Social Sci. Med. 33, 545–557 (1991).

    Article  CAS  Google Scholar 

  34. Zhang, X. et al. Socioeconomic inequities in health care utilization in China. Asia Pac. J. Public Health 27, 429–438 (2015).

    Article  PubMed  Google Scholar 

  35. Concentration Curves (World Bank, 2023); https://www.worldbank.org/content/dam/Worldbank/document/HDN/Health/HealthEquityCh7.pdf

  36. The Concentration Index (World Bank, 2023); https://www.worldbank.org/content/dam/Worldbank/document/HDN/Health/HealthEquityCh8.pdf

  37. D’Odorico, P., Carr, J. A., Davis, K. F., Dell’Angelo, J. & Seekell, D. A. Food inequality, injustice, and rights. Bioscience 69, 180–190 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Palomaki, G. E. & Neveux, L. M. Using multiples of the median to normalize serum protein measurements. Clin. Chem. Lab. Med. 39, 1137–1145 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Liu, H. Q., Wang, Y. H., Wang, L. L. & Hao, M. Predictive value of fFree beta-hCG multiple of the median for women with preeclampsia. Gynecol. Obstet. Invest. 81, 137–147 (2016).

    Article  CAS  Google Scholar 

  40. Bestwick, J. P. et al. Thyroid stimulating hormone and free thyroxine in pregnancy: expressing concentrations as multiples of the median (MoMs). Clin. Chim. Acta 430, 33–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  41. Xu, Z. C. et al. Impacts of international trade on global sustainable development. Nat. Sustain. 3, 964–971 (2020).

    Article  Google Scholar 

  42. Metulini, R., Tamea, S., Laio, F. & Riccaboni, M. The water suitcase of migrants: assessing virtual water fluxes associated to human migration. PLoS ONE 11, e0153982 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Acey, C. et al. Cross-subsidies for improved sanitation in low income settlements: assessing the willingness to pay of water utility customers in Kenyan cities. World Dev. 115, 160–177 (2019).

    Article  Google Scholar 

  44. Hung, M. F. & Chie, B. T. Residential water use: efficiency, affordability, and price elasticity. Water Resour. Manage. 27, 275–291 (2013).

    Article  Google Scholar 

  45. Carrard, N. et al. Are piped water services reaching poor households? Empirical evidence from rural Viet Nam. Water Res. 153, 239–250 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Li, H. R. et al. Drip fertigation significantly increased crop yield, water productivity and nitrogen use efficiency with respect to traditional irrigation and fertilization practices: a meta-analysis in China. Agric. Water Manage. 244, 106534 (2021).

    Article  Google Scholar 

  47. Liu, B. B. et al. Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nat. Food 2, 570–577 (2021).

    Article  PubMed  Google Scholar 

  48. Chaudhary, B. & Kumar, V. Emerging technological frameworks for the sustainable agriculture and environmental management. Sustain. Horiz. 3, 100026 (2022).

    Article  Google Scholar 

  49. Fishman, R., Devineni, N. & Raman, S. Can improved agricultural water use efficiency save India’s groundwater? Environ. Res. Lett. 10, 084022 (2015).

    Article  Google Scholar 

  50. Janssens, C. et al. Global hunger and climate change adaptation through international trade. Nat. Clim. Change 10, 829–835 (2020).

    Article  Google Scholar 

  51. Lin, J. T. et al. Carbon and health implications of trade restrictions. Nat. Commun. 10, 4947 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mishra, R. K. & Karthik, M. Understanding the US–China trade war: causes, consequences and economic impact. Glob. Trade Cust. J. 15, 580–591 (2020).

    Article  Google Scholar 

  53. Disdier, A. C., Fontagne, L. & Mimouni, M. The impact of regulations on agricultural trade: evidence from the SPS and TBT agreements. Am. J. Agr. Econ. 90, 336–350 (2008).

    Article  Google Scholar 

  54. Kharrazi, A. et al. Examining the ecology of commodity trade networks using an ecological information-based approach: toward strategic assessment of resilience. J. Ind. Ecol. 19, 805–813 (2015).

    Article  Google Scholar 

  55. Hicks, C. C. et al. Rights and representation support justice across aquatic food systems. Nat. Food 3, 851–861 (2022).

    Article  PubMed  Google Scholar 

  56. Moran, D. D., Lenzen, M., Kanemoto, K. & Geschke, A. Does ecologically unequal exchange occur? Ecol. Econ. 89, 177–186 (2013).

    Article  Google Scholar 

  57. Debaere, P. The global economics of water: is water a source of comparative advantage? Am. Econ. J. Appl. Econ. 6, 32–48 (2014).

    Article  Google Scholar 

  58. Tobin, James On limiting the domain of inequality. J. Law Econ. 13, 263–277 (1970).

    Article  Google Scholar 

  59. Hoekstra, A. Y. & Mekonnen, M. M. The water footprint of humanity. Proc. Natl Acad. Sci. USA 109, 3232–3237 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mekonnen, M. M. & Hoekstra, A. Y. Blue water footprint linked to national consumption and international trade is unsustainable. Nat. Food 1, 792–800 (2020).

    Article  PubMed  Google Scholar 

  61. Siebert, S. & Doll, P. Quantifying blue and green virtual water contents in global crop production as well as potential production losses without irrigation. J. Hydrol. 384, 198–217 (2010).

    Article  Google Scholar 

  62. Siebert, S. et al. Development and validation of the global map of irrigation areas. Hydrol. Earth Syst. Sci. 9, 535–547 (2005).

    Article  Google Scholar 

  63. Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements Paper 56 (FAO Irrigation and Drainage, 1998).

  64. Portmann, F. T., Siebert, S. & Doll, P. MIRCA2000—global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling. Glob. Biogeochem. Cycle 24, GB1011 (2010).

    Article  Google Scholar 

  65. Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).

    Article  Google Scholar 

  66. Qin, Y. et al. Flexibility and intensity of global water use. Nat. Sustain. 2, 515–523 (2019).

    Article  Google Scholar 

  67. Food and Agriculture Data (FAO, 2022); https://www.fao.org/faostat/en/#data

  68. ERA5 Monthly Averaged Data on Single Levels from 1940 to Present (European Centre for Medium-Range Weather Forecasts, 2023); https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview

  69. Kastner, T., Kastner, M. & Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 70, 1032–1040 (2011).

    Article  Google Scholar 

  70. Water Availability Indices—A Literature Review (Argonne National Laboratory, 2023); https://publications.anl.gov/anlpubs/2017/03/134309.pdf

  71. Hanasaki, N. et al. A global water scarcity assessment under shared socio-economic pathways—part 1: water use. Hydrol. Earth Syst. Sci. 17, 2375–2391 (2013).

    Article  Google Scholar 

  72. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 1068–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global monthly water scarcity: blue water footprints versus blue water availability. PLoS ONE 7, e32688 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Goldewijk, K. K., Beusen, A. & Janssen, P. Long-term dynamic modeling of global population and built-up area in a spatially explicit way: HYDE 3.1. Holocene 20, 565–573 (2010).

    Article  Google Scholar 

  75. IMF Country Information (IMF, 2023); https://www.imf.org/en/Countries

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant 42277482 to Y.Q., grant 42361144876 to F.Z., Q.Z., X.W. and Y.Q. and grant 42171096 to X.W.). L.Y. acknowledges support from National Key R&D Plan Intergovernmental International Science and Technology Innovation Cooperation Key Special Project of China (2022YFE0138300) and Yunnan Key R&D Plan Program (202302A0370015). W.G. acknowledges support from Peking University-BHP Carbon and Climate Wei-Ming PhD Scholars (WM202306). C.H. acknowledges support from the National Natural Science Foundation of China (42277087). F.W. acknowledges support from the Key Project of the National Natural Science Foundation of China (grant number 52130804). S.S. received funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—SFB 1502-1-2022—projektnummer 450058266. M.K. acknowledges support from the European Research Council under the European Union’s Horizon 2020 research and innovation program grant (SOS.aquaterra; grant agreement number 819202), the Research Council of Finland’s project TREFORM (grant 339834) and the Research Council of Finland’s Flagship Programme under project Digital Waters (359248). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q. designed this study. W.G., C.H., S.S. and M.K. led the data analysis. Y.L., Q.Z., F.Z., X.W. and F.W. contributed to the discussion and interpretation of the results. W.G. and Y.Q. wrote the paper with input from all co-authors.

Corresponding author

Correspondence to Yue Qin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary, Notes, Tables 1–12 and Figs. 1–10.

Reporting Summary

Source data

Source Data Fig. 1

Asymmetric change of water scarcity embodied in international agricultural trade across developing/developed countries and populations.

Source Data Fig. 2

Asymmetric changes of water use inequality and inequity embodied in international agricultural trade across developing/developed countries and populations.

Source Data Fig. 3

Synergies and trade-offs between water scarcity, inequality and inequity embodied in international agricultural trade.

Source Data Fig. 4

Relative importance of crop-specific contribution to the change of water scarcity, inequality and inequity due to international agricultural trade for eight selected countries.

Source Data Fig. 5

Relative importance of trading-partner-specific contribution to the change of water scarcity, inequality and inequity due to international agricultural trade for eight selected countries.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Wang, F., Siebert, S. et al. The asymmetric impacts of international agricultural trade on water use scarcity, inequality and inequity. Nat Water 2, 324–336 (2024). https://doi.org/10.1038/s44221-024-00224-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00224-7

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene