Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrastable ceramic-based metal–organic framework membranes with missing linkers for robust desalination

Abstract

The rational design of high-performance desalination membranes is critical to enable sustainable water treatment applications. However, conventional polymeric membranes suffer from insufficient stability especially under harsh chemical conditions. Here we show a novel robust ceramic-based UiO-66 metal–organic framework nanoporous membrane molecularly engineered with missing linkers, enabling more challenging chemically harsh desalination applications. The membranes show competitive desalination performance, which is higher than most state-of-the-art asymmetric and thin-film composite polymeric osmotic membranes. Experimental and molecular simulation results indicate that introducing missing-linker defects substantially increases water flux, allowing faster transport of water clusters with a lower energy barrier via enlarging the pore size of metal–organic framework nanochannels. Notably, the UiO-66 membranes exhibit exceptional stability compared with polymeric membranes under high oxidizing (chlorine) and alkaline conditions and promising application potential in industrial wastewater treatment. Our work provides a new rational design of robust high-performance desalination membranes for expanded water treatment applications that are not feasible by conventional polymeric membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis route and morphological and chemical structural characterization of ultrathin UiO-66 membranes without and with missing linkers.
Fig. 2: The intra-crystalline defect-enhanced water permeation and desalination performance of the UiO-66 and ML-UiO-66 membranes.
Fig. 3: Thermally enhanced desalination performance and operation stability for ML-UiO-66 and commercial CTA membranes.
Fig. 4: Atomic level mechanism of defect- and heat-enhanced desalination performance for ML-UiO-66 membranes.
Fig. 5: Performance and operating stability of ML-UiO-66 and commercial CTA membranes under harsh chemical conditions.
Fig. 6: Operation performance and stability of ML-UiO-66 membrane in treatment of real alkaline industrial petrochemical wastewater via an osmotically driven process.

Similar content being viewed by others

Data availability

All data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

All simulation codes are available from the corresponding authors upon reasonable request.

References

  1. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Montgomery, M. A. & Elimelech, M. Water and sanitation in developing countries: including health in the equation. Environ. Sci. Technol. 41, 17–24 (2007).

    Article  PubMed  Google Scholar 

  3. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  4. Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for desalination—development to date and future potential. J. Membr. Sci. 370, 1–22 (2011).

    Article  CAS  Google Scholar 

  5. Yang, H.-C., Luo, J., Lv, Y., Shen, P. & Xu, Z.-K. Surface engineering of polymer membranes via mussel-inspired chemistry. J. Membr. Sci. 483, 42–59 (2015).

    Article  CAS  Google Scholar 

  6. Wang, J. et al. Fast polydopamine coating on reverse osmosis membrane: process investigation and membrane performance study. J. Colloid Interface Sci. 535, 239–244 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Tharayil, J. M., Manaf, A. & Johnson, N. J. Sustainable forward osmosis desalination: a review on polymeric membranes and flux parameters. Int. J. Environ. Anal. Chem. https://doi.org/10.1080/03067319.2020.1784414 (2020).

    Article  Google Scholar 

  8. Goda, S. & Sekino, M. Application of irreversible thermodynamic model to a hollow fiber forward osmosis module in sodium chloride aqueous solution system. Desalination 486, 114458 (2020).

    Article  CAS  Google Scholar 

  9. Khazaie, F., Sheshmani, S., Shokrollahzadeh, S. & Shahvelayati, A. S. Desalination of saline water via forward osmosis using magnetic nanoparticles covalently functionalized with citrate ions as osmotic agent. Environ. Technol. 43, 2113–2123 (2020).

    Article  PubMed  Google Scholar 

  10. Zhang, M. et al. Engineering a nanocomposite interlayer for a novel ceramic-based forward osmosis membrane with enhanced performance. Environ. Sci. Technol. 54, 7715–7724 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Wang, Y.-N., Goh, K., Li, X., Setiawan, L. & Wang, R. Membranes and processes for forward osmosis-based desalination: recent advances and future prospects. Desalination 434, 81–99 (2018).

    Article  CAS  Google Scholar 

  12. Morales-Torres, S., Esteves, C. M. P., Figueiredo, J. L. & Silva, A. M. T. Thin-film composite forward osmosis membranes based on polysulfone supports blended with nanostructured carbon materials. J. Membr. Sci. 520, 326–336 (2016).

    Article  CAS  Google Scholar 

  13. Gray, G. T., McCutcheon, J. R. & Elimelech, M. Internal concentration polarization in forward osmosis: role of membrane orientation. Desalination 197, 1–8 (2006).

    Article  CAS  Google Scholar 

  14. Assaad, N., Sabeh, G. & Hmadeh, M. Defect control in Zr-based metal–organic framework nanoparticles for arsenic removal from water. ACS Appl. Nano Mater. 3, 8997–9008 (2020).

    Article  CAS  Google Scholar 

  15. Tang, A. et al. Engineering novel thin-film composite membranes with crater-like surface morphology using rigidly-contorted monomer for high flux nanofiltration. Desalination 509, 115067 (2021).

    Article  CAS  Google Scholar 

  16. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Article  Google Scholar 

  17. Valenzano, L. et al. Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chem. Mater. 23, 1700–1718 (2011).

    Article  CAS  Google Scholar 

  18. Bai, Y. et al. Zr-based metal–organic frameworks: design, synthesis, structure, and applications. Chem. Soc. Rev. 45, 2327–2367 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Li, W. Metal–organic framework membranes: production, modification, and applications. Prog. Mater Sci. 100, 21–63 (2019).

    Article  Google Scholar 

  20. Kadhom, M. & Deng, B. Metal–organic frameworks (MOFs) in water filtration membranes for desalination and other applications. Appl. Mater. Today 11, 219–230 (2018).

    Article  Google Scholar 

  21. Liu, X., Demir, N. K., Wu, Z. & Li, K. Highly water-stable zirconium metal–organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc. 137, 6999–7002 (2015).

    Article  CAS  PubMed  Google Scholar 

  22. Lu, J. et al. Ultrafast rectifying counter-directional transport of proton and metal ions in metal–organic framework-based nanochannels. Sci. Adv. 8, eabl5070 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, X. et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 13, 266 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dong, Y. et al. Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes. Nano Lett. 58, 5514–5521 (2018).

    Article  Google Scholar 

  26. Cliffe, M. J. et al. Correlated defect nanoregions in a metal–organic framework. Nat. Commun. 5, 4176 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Feng, Y., Chen, Q., Jiang, M. & Yao, J. Tailoring the properties of UiO-66 through defect engineering: a review. Ind. Eng. Chem. Res. 58, 17646–17659 (2019).

    Article  CAS  Google Scholar 

  28. Winarta, J. et al. A decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework. Cryst. Growth Des. 20, 1347–1362 (2019).

    Article  Google Scholar 

  29. Song, L., Heiranian, M. & Elimelech, M. True driving force and characteristics of water transport in osmotic membranes. Desalination 520, 115360 (2021).

    Article  CAS  Google Scholar 

  30. Beshkar, F., Salavati-Niasari, M. & Amiri, O. A reliable hydrophobic/superoleophilic fabric filter for oil–water separation: hierarchical bismuth/purified terephthalic acid nanocomposite. Cellulose 27, 9559–9575 (2020).

    Article  CAS  Google Scholar 

  31. Alihemati, Z., Hashemifard, S. A., Matsuura, T., Ismail, A. F. & Hilal, N. Current status and challenges of fabricating thin film composite forward osmosis membrane: a comprehensive roadmap. Desalination 491, 114557 (2020).

    Article  CAS  Google Scholar 

  32. Tang, C. Y., She, Q., Lay, W. C. L., Wang, R. & Fane, A. G. Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration. J. Membr. Sci. 354, 123–133 (2010).

    Article  CAS  Google Scholar 

  33. Mahpoz, N. M. et al. ZIF-8 membrane supported on alumina hollow fiber with enhanced salt removal by forward osmosis. Desalination 496, 114697 (2020).

    Article  CAS  Google Scholar 

  34. You, S.-J. et al. Temperature as a factor affecting transmembrane water flux in forward osmosis: steady-state modeling and experimental validation. Chem. Eng. J. 198-199, 52–60 (2012).

    Article  CAS  Google Scholar 

  35. Phuntsho, S. et al. Influence of temperature and temperature difference in the performance of forward osmosis desalination process. J. Membr. Sci. 415-416, 734–744 (2012).

    Article  CAS  Google Scholar 

  36. Wang, Q., Zhou, Z., Li, J., Tang, Q. & Hu, Y. Modeling and measurement of temperature and draw solution concentration induced water flux increment efficiencies in the forward osmosis membrane process. Desalination 452, 75–86 (2019).

    Article  CAS  Google Scholar 

  37. Lyu, Q., Deng, X., Hu, S., Lin, L.-C. & Ho, W. S. W. Exploring the potential of defective UiO-66 as reverse osmosis membranes for desalination. J. Phys. Chem. C 123, 16118–16126 (2019).

    Article  Google Scholar 

  38. Liu, L. et al. Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nat. Chem. 11, 622–628 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Heiranian, M., Fan, H., Wang, L., Lu, X. & Elimelech, M. Mechanisms and models for water transport in reverse osmosis membranes: history, critical assessment, and recent developments. Chem. Soc. Rev. 52, 8455–8480 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shearer, G. C. et al. Tuned to perfection: ironing out the defects in metal–organic framework UiO-66. Chem. Mater. 26, 4068–4071 (2014).

    Article  CAS  Google Scholar 

  42. Wang, Y. H. et al. Chlorine disinfection significantly aggravated the biofouling of reverse osmosis membrane used for municipal wastewater reclamation. Water Res. 154, 246–257 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Gong, W. et al. Topological strain-induced regioselective linker elimination in a chiral Zr(IV)-based metal-organic framework. Chem 7, 190–201 (2021).

    Article  CAS  Google Scholar 

  44. Nguyen, H. L. Metal–organic frameworks can photocatalytically split water-why not? Adv. Mater. 34, 2200465 (2022).

    Article  CAS  Google Scholar 

  45. Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 15018 (2016).

    Article  CAS  Google Scholar 

  46. Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Article  PubMed  Google Scholar 

  47. Yuan, B. et al. Cross-linked graphene oxide framework membranes with robust nano-channels for enhanced sieving ability. Environ. Sci. Technol. 54, 15442–15453 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Si, Y. et al. Flexible superhydrophobic metal-based carbon nanotube membrane for electrochemically enhanced water treatment. Environ. Sci. Technol. 54, 9074–9082 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Wang, X. et al. Improving water-treatment performance of zirconium metal–organic framework membranes by postsynthetic defect healing. ACS Appl. Mater. Interfaces 9, 37848–37855 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, W., Li, Z., Chen, Y. & Li, W. Polydopamine-modified metal–organic framework membrane with enhanced selectivity for carbon capture. Environ. Sci. Technol. 53, 3764–3772 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Zhang, K. et al. Exploration of food preservatives as draw solutes in the forward osmosis process for juice concentration. J. Membr. Sci. 635, 119495 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC)-Research Grants Council (RGC) Joint Program (number 52261160381, Y.D.) and NSFC General Program (number 52070033, Y.D.). The work is also partially supported by the NSFC-RGC Joint Research Scheme (project number N_HKU721/22, C.T.) from the Research Grants Council of the Hong Kong Special Administration Region, China. We also would like to express our sincere appreciations to USTC, DUT and CUHK for support.

Author information

Authors and Affiliations

Authors

Contributions

H.-Q.Y., M.E. and Y.D. supervised this project. Y.D. made the idea and contributions. Q.L. and L.-C.L. performed the computational simulations. Y.H. performed the low-dose TEM experiments. Y.D. wrote the manuscript. M.E., H.-Q.Y. and Y.D. revised the manuscript. Q.L., C.V., C.T. and B.L. made some important contributions to this work. All authors approved the manuscript.

Corresponding authors

Correspondence to Yingchao Dong, Han-Qing Yu or Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Yan Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Tables 1–6.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Lyu, Q., Lin, LC. et al. Ultrastable ceramic-based metal–organic framework membranes with missing linkers for robust desalination. Nat Water (2024). https://doi.org/10.1038/s44221-024-00218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44221-024-00218-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing