Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications

Abstract

Solar desalination holds great promise for addressing global water scarcity and reducing carbon footprints. In recent years, thermally localized solar interfacial desalination processes have attracted much attention due to their efficient water evaporation potential. Previous efforts have focused on developing novel photothermal materials and optimizing thermal management to increase system evaporation rates. However, the water production rate of a desalination device is mainly independent of its evaporator performance, which makes it challenging to translate improved system evaporation rates into actual water production rates. This Review discusses the significance of steam condensation in promoting water production and emphasizes the importance of latent heat recovery. We highlight the industrial design of the desalination system, application scenarios, current limitations and potential costs. Furthermore, we present the potential of hybrid drive solutions for the future design of interference-resistant, fast-response, all-weather desalination systems. This Review aims to provide guidance for the development of high-performance solar desalination integrated devices and their large-scale industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Water and solar resource distribution in the world.
Fig. 2: Schematic diagram of the solar-powered desalination process.
Fig. 3: Functional design and optimization strategies of PECs of SID systems.
Fig. 4: The process of phase change of steam and the transfer of its energy.
Fig. 5: Schematic design of a high-performance all-weather multistage SID system.

Similar content being viewed by others

References

  1. New water and climate coalition launched ahead of World Water Day. WMO https://public.wmo.int/en/media/press-release/new-water-and-climate-coalition-launched-ahead-of-world-water-day (2021).

  2. He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, X. et al. Solar steam-driven membrane filtration for high flux water purification. Nat. Water 1, 391–398 (2023).

    Article  Google Scholar 

  4. Zheng, Y. et al. Large-scale solar-thermal desalination. Joule 5, 1971–1986 (2021).

    Article  CAS  Google Scholar 

  5. Menon, A. K. et al. Enhanced solar evaporation using a photothermal umbrella for wastewater management. Nat. Sustain. 3, 144–151 (2020).

    Article  Google Scholar 

  6. Hofste, R. W. et al. Aqueduct 3.0: Updated Decision-Relevant Global Water Risk Indicators (World Resources Institute, 2019); https://www.wri.org/publication/aqueduct-30

  7. GDP per capita (current US$). World Bank https://data.worldbank.org/indicator/NY.GDP.PCAP.CD?end=2019&start=1960&view=chart (2023).

  8. Solar resource maps of world: global horizontal irradiation. Solargis https://solargis.com/maps-and-gis-data/download/world (2023).

  9. Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    Article  CAS  Google Scholar 

  10. Kabeel, A. E. & El-Agouz, S. A. Review of researches and developments on solar stills. Desalination 276, 1–12 (2011).

    Article  CAS  Google Scholar 

  11. Al-Karaghouli, A. & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sust. Energy Rev. 24, 343–356 (2013).

    Article  CAS  Google Scholar 

  12. Wang, F. et al. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 5, 1602–1612 (2021).

    Article  CAS  Google Scholar 

  13. Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Article  ADS  Google Scholar 

  15. Xu, N. et al. Mushrooms as efficient solar steam-generation devices. Adv. Mater. 29, 1606762 (2017).

    Article  Google Scholar 

  16. Zhang, L. et al. Modeling and performance analysis of high-efficiency thermally-localized multistage solar stills. Appl. Energy 266, 114864 (2020).

    Article  Google Scholar 

  17. Chen, C. et al. Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019).

    Article  CAS  Google Scholar 

  18. Zhao, F. et al. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Article  ADS  Google Scholar 

  19. Thoai, D. N. et al. Review on the recent development and applications of three dimensional (3D) photothermal materials for solar evaporators. J. Clean. Prod. 293, 126122 (2021).

    Article  Google Scholar 

  20. Gao, M. et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019).

    Article  CAS  Google Scholar 

  21. Dang, C. et al. A multichannel photothermal rod for antigravity water transportation and high-flux solar steam generation. J. Mater. Chem. A 10, 18116–18125 (2022).

    Article  CAS  Google Scholar 

  22. Li, J. et al. Over 10 kg m−2 h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 4, 928–937 (2020).

    Article  CAS  Google Scholar 

  23. Xu, K. et al. Salt mitigation strategies of solar-driven interfacial desalination. Adv. Funct. Mater. 31, 2007855 (2020).

    Article  Google Scholar 

  24. Liu, G. et al. Salt-rejecting solar interfacial evaporation. Cell Rep. Phys. Sci. 2, 100310 (2021).

    Article  CAS  Google Scholar 

  25. Dang, C. et al. Ultra salt-resistant solar desalination system via large-scale easy assembly of microstructural units. Energy Environ. Sci. 15, 5404–5414 (2022).

    Article  Google Scholar 

  26. Zhou, L. et al. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci. Rev. 6, 562–578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 2016126 (2016).

    Article  ADS  Google Scholar 

  28. Li, X. et al. Measuring conversion efficiency of solar vapor generation. Joule 3, 1798–1803 (2019).

    Article  Google Scholar 

  29. Li, R., Wang, W., Shi, Y., Wang, C. T. & Wang, P. Advanced material design and engineering for water-based evaporative cooling. Adv. Mater. 13, e2209460 (2023).

    Article  Google Scholar 

  30. Li, X. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018).

    Article  CAS  Google Scholar 

  31. Song, H. et al. Cold vapor generation beyond the input solar energy limit. Adv. Sci. 5, 1800222 (2018).

    Article  Google Scholar 

  32. Zhao, G. et al. Engineering high-tortuosity 3D gradient structure and CFD-assisted multifield analysis for solar interfacial evaporation. Small 27, e2305855 (2023).

    Google Scholar 

  33. Yang, Z. et al. Optimized water supply in a solar evaporator for simultaneous freshwater production and salt recycle. Environ. Sci. Technol. 57, 13047–13055 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Dang, C. et al. Design of solar evaporator with well-aligned and multi-scale fluid channels based on convection tuning for stable and efficient brine desalination. Desalination 550, 116408 (2023).

    Article  CAS  Google Scholar 

  35. Liu, Z. et al. Continuously producing watersteam and concentrated brine from seawater by hanging photothermal fabrics under sunlight. Adv. Funct. Mater. 29, 1905485 (2019).

    Article  CAS  Google Scholar 

  36. Liu, Z. et al. Hierarchical photothermal fabrics with low evaporation enthalpy as heliotropic evaporators for efficient, continuous, salt-free desalination. ACS Nano 15, 13007–13018 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, C. et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12, 998 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  38. Dang, C. et al. Industrial pathways to lithium extraction from seawater: challenges and perspectives. Nano Res. Energy 2, e9120059 (2023).

    Article  ADS  Google Scholar 

  39. Hao, X. et al. Multifunctional solar water harvester with high transport selectivity and fouling rejection capacity. Nat. Water https://doi.org/10.1038/s44221-023-00152-y (2023).

    Article  Google Scholar 

  40. Wang, S. et al. Boosting clean water evaporation and sustainable water treatment by photothermally induced artificial system. J. Mater. Sci. https://doi.org/10.1007/s10853-023-09029-7 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zhao, L. et al. A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020).

    Article  CAS  Google Scholar 

  42. Xu, N. et al. Synergistic tandem solar electricity-water generators. Joule 4, 347–358 (2020).

    Article  Google Scholar 

  43. Wang, W. et al. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 5, 1873–1887 (2021).

    Article  Google Scholar 

  44. Xu, Z. et al. Solar evaporation with solute replacement towards real-world applications. Energy Environ. Sci. 16, 5325–5338 (2023).

    Article  CAS  Google Scholar 

  45. Wu, S. L. et al. Suspended membrane evaporators integrating environmental and solar evaporation for oily wastewater purification. ACS Appl. Mater. Interfaces 13, 39513–39522 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, Z. et al. Improving solar vapor generation by eliminating the boundary layer inhibition effect of evaporator pores. ACS Energy Lett. 8, 2276–2283 (2023).

    Article  CAS  Google Scholar 

  47. Yang, H. et al. High freshwater flux solar desalination via a 3D plasmonic evaporator with an efficient heat-mass evaporation interface. Adv. Mater. 35, e2304699 (2023).

    Article  PubMed  Google Scholar 

  48. Yang, B. et al. Flatband λ-Ti3O5 towards extraordinary solar steam generation. Nature 622, 499–506 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Wu, S.-L. et al. Solar-driven evaporators for water treatment: challenges and opportunities. Environ. Sci. Water Res. Technol. 7, 24–39 (2021).

    Article  ADS  CAS  Google Scholar 

  50. Irshad, M. S. et al. Advances of 2D-enabled photothermal materials in hybrid solar-driven interfacial evaporation systems toward water-fuel-energy crisis. Adv. Funct. Mater. 33, 2304936 (2023).

    Article  Google Scholar 

  51. Cui, X. et al. Photothermal nanomaterials: a powerful light-to-heat converter. Chem. Rev. 123, 6891–6952 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, S. et al. Understanding interfacial properties for enhanced solar evaporation devices: from geometrical to physical interfaces. ACS Energy Lett. 8, 1680–1687 (2023).

    Article  CAS  Google Scholar 

  53. Yin, Q. et al. The emerging development of solar evaporators in materials and structures. Chemosphere 289, 133210 (2021).

    Article  PubMed  Google Scholar 

  54. Zhang, Y. et al. Structure architecting for salt-rejecting solar interfacial desalination to achieve high-performance evaporation with in situ energy generation. Adv. Sci. 7, 1903478 (2020).

    Article  CAS  Google Scholar 

  55. Ying, P. et al. Band gap engineering in an efficient solar-driven interfacial evaporation system. ACS Appl. Mater. Interfaces 12, 32880–32887 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Sharshir, S. W. et al. New hydrogel materials for improving solar water evaporation, desalination and wastewater treatment: a review. Desalination 491, 114564 (2020).

    Article  CAS  Google Scholar 

  57. Li, X., Zhu, B. & Zhu, J. Graphene oxide based materials for desalination. Carbon 146, 320–328 (2019).

    Article  CAS  Google Scholar 

  58. Zhu, L. et al. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5, 323–343 (2018).

    Article  CAS  Google Scholar 

  59. Pang, Y. et al. Solar-thermal water evaporation: a review. ACS Energy Lett. 5, 437–456 (2020).

    Article  ADS  CAS  Google Scholar 

  60. Cao, S. et al. Advances in solar evaporator materials for freshwater generation. J. Mater. Chem. A 7, 24092–24123 (2019).

    Article  CAS  Google Scholar 

  61. Ding, T. et al. Hybrid solar-driven interfacial evaporation systems: Beyond water production towards high solar energy utilization. Mater. Today 42, 178–191 (2021).

    Article  CAS  Google Scholar 

  62. Guan, W. et al. Carbon materials for solar water evaporation and desalination. Small 17, e2007176 (2021).

    Article  PubMed  Google Scholar 

  63. Meng, F. et al. Nano/microstructured materials for solar-driven interfacial evaporators towards water purification. J. Mater. Chem. A 9, 13746–13769 (2021).

    Article  CAS  Google Scholar 

  64. Liu, H. et al. Bioinspired self-standing, self-floating 3D solar evaporators breaking the trade-off between salt cycle and heat localization for continuous seawater desalination. Adv. Mater. 35, e2301596 (2023).

    Article  PubMed  Google Scholar 

  65. Yang, H. C. et al. Membranes in solar-driven evaporation: design principles and applications. Adv. Funct. Mater. 33, 2304580 (2023).

    Article  CAS  Google Scholar 

  66. Li, T. et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv. Funct. Mater. 28, 1707134 (2018).

    Article  ADS  Google Scholar 

  67. Xu, Y. et al. A facile approach to fabricate sustainable and large-scale photothermal polydopamine-coated cotton fabrics for efficient interfacial solar steam generation. Ind. Eng. Chem. Res. 61, 18109–18120 (2022).

    Article  CAS  Google Scholar 

  68. Li, C. et al. A covalent organic framework/graphene dual-region hydrogel for enhanced solar-driven water generation. J. Am. Chem. Soc. 144, 3083–3090 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Abdoul-Carime, H. et al. Velocity of a molecule evaporated from a water nanodroplet: Maxwell–Boltzmann statistics versus non-ergodic events. Angew. Chem. Int. Ed. 54, 14685–14689 (2015).

    Article  CAS  Google Scholar 

  70. Kudo, K. et al. Structural changes of water in poly(vinyl alcohol) hydrogel during dehydration. J. Chem. Phys. 140, 044909 (2014).

    Article  ADS  PubMed  Google Scholar 

  71. Miyazaki, M. et al. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1134–1137 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  72. Xingyi, Z. et al. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5, eaaw5484 (2019).

    Article  Google Scholar 

  73. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Liu, Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Xu, W. et al. Efficient water transport and solar steam generation via radially, hierarchically structured aerogels. ACS Nano 13, 7930–7938 (2019).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, C., Xu, K., Shi, G. & Wei, D. Water skin effect and arched double-sided evaporation for boosting all-weather high salinity desalination. Adv. Energy Mater. 13, 2300134 (2023).

    Article  CAS  Google Scholar 

  77. Ni, G. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018).

    Article  CAS  Google Scholar 

  78. Xia, Y. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019).

    Article  CAS  Google Scholar 

  79. Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  80. Xu, N. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl Sci. Rev. 8, nwab065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Xia, Y. et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine. J. Mater. Chem. A 8, 16212–16217 (2020).

    Article  CAS  Google Scholar 

  82. Chen, X. et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14, 5347–5357 (2021).

    Article  CAS  Google Scholar 

  83. Yao, H. et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ. Sci. 14, 5330–5338 (2021).

    Article  CAS  Google Scholar 

  84. Hu, R. et al. A Janus evaporator with low tortuosity for long-term solar desalination. J. Mater. Chem. A 7, 15333–15340 (2019).

    Article  CAS  Google Scholar 

  85. Zhao, W. et al. Hierarchically designed salt-resistant solar evaporator based on Donnan effect for stable and high-performance brine treatment. Adv. Funct. Mater. 31, 2100025 (2021).

    Article  CAS  Google Scholar 

  86. Kuang, Y. et al. A high-performance self-regenerating solar evaporator for continuous water desalination. Adv. Mater. 31, e1900498 (2019).

    Article  PubMed  Google Scholar 

  87. Su, X. et al. Setaria viridis-inspired hydrogels with multilevel structures for efficient all-day fresh water harvesting. J. Mater. Chem. A 11, 7702–7710 (2023).

    Article  CAS  Google Scholar 

  88. Patel, S. K. et al. The relative insignificance of advanced materials in enhancing the energy efficiency of desalination technologies. Energy Environ. Sci. 13, 1694–1710 (2020).

    Article  CAS  Google Scholar 

  89. Zhang, S. et al. The effect of surface-free energy and microstructure on the condensation mechanism of water vapor. Prog. Nat. Sci. 33, 37–46 (2023).

    Article  CAS  Google Scholar 

  90. Durán, I. R. & Laroche, G. Current trends, challenges, and perspectives of anti-fogging technology: surface and material design, fabrication strategies, and beyond. Prog. Mater Sci. 99, 106–186 (2019).

    Article  Google Scholar 

  91. Li, X., Li, B., Li, Y. & Sun, J. Nonfluorinated, transparent, and spontaneous self-healing superhydrophobic coatings enabled by supramolecular polymers. Chem. Eng. J. 404, 126504 (2021).

    Article  CAS  Google Scholar 

  92. Xu, Z. et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 13, 830–839 (2020).

    Article  CAS  Google Scholar 

  93. Vaartstra, G. et al. Capillary-fed, thin film evaporation devices. J. Appl. Phys. 128, 130901 (2020).

    Article  ADS  CAS  Google Scholar 

  94. Narayanan, S. et al. A thermophysical battery for storage-based climate control. Appl. Energy 189, 31–43 (2017).

    Article  ADS  CAS  Google Scholar 

  95. Zhou, X. et al. Solar water evaporation toward water purification and beyond. ACS Mater. Lett. 3, 1112–1129 (2021).

    Article  CAS  Google Scholar 

  96. Wang, W. et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10, 3012 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  97. Chiavazzo, E. et al. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    Article  Google Scholar 

  98. Wang, H. et al. Simultaneous solar steam and electricity generation from synergistic salinity-temperature gradient. Adv. Energy Mater. 11, 2100481 (2021).

    Article  CAS  Google Scholar 

  99. Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  100. Zhang, Y. et al. Manipulating unidirectional fluid transportation to drive sustainable solar water extraction and brine-drenching induced energy generation. Energy Environ. Sci. 13, 4891–4902 (2020).

    Article  CAS  Google Scholar 

  101. Zuo, K. et al. Multifunctional nanocoated membranes for high-rate electrothermal desalination of hypersaline waters. Nat. Nanotechnol. 15, 1025–1032 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  102. Huang, C. H. et al. Tailoring of a piezo-photo-thermal solar evaporator for simultaneous steam and power generation. Adv. Funct. Mater. 31, 2010422 (2021).

    Article  CAS  Google Scholar 

  103. Li, L. et al. Highly salt-resistant and all-weather solar-driven interfacial evaporators with photothermal and electrothermal effects based on Janus graphene@silicone sponges. Nano Energy 81, 105682 (2021).

    Article  CAS  Google Scholar 

  104. Wang, M. et al. Aramid-based aerogels for driving water evaporation through both photo-thermal and electro-thermal effects. J. Mater. Chem. A 11, 7711–7723 (2023).

    Article  CAS  Google Scholar 

  105. Average monthly residential cost of water in the U.S. from 2010 to 2019. Statista https://www.statista.com/statistics/720418/average-monthly-cost-of-water-in-the-us/ (2023).

  106. Kabeel, A. E. Performance of solar still with a concave wick evaporation surface. Energy 34, 1504–1509 (2009).

    Article  Google Scholar 

  107. Geng, Y. et al. Bioinspired fractal design of waste biomass-derived solar-thermal materials for highly efficient solar evaporation. Adv. Funct. Mater. 31, 2007648 (2020).

    Article  Google Scholar 

  108. Interagency Working Group on Social Cost of Greenhouse Gases, United States Government. Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis-under Executive Order 12866 (Environmental Protection Agency, 2013); https://www.epa.gov/sites/default/files/2016-12/documents/sc_co2_tsd_august_2016.pdf

  109. Zhu, B. et al. Solar-driven watersteam/brine production and brine-driven electricity generation by photothermal fabric coupled with osmotic membrane. Nano Energy 117, 108844 (2023).

    Article  CAS  Google Scholar 

  110. Niu, R. et al. Bio-inspired sandwich-structured all-day-round solar evaporator for synergistic clean water and electricity generation. Adv. Energy Mater. 13, 2302451 (2023).

    Article  CAS  Google Scholar 

  111. He, N. et al. Ionization engineering of hydrogels enables highly efficient salt-impeded solar evaporation and night-time electricity harvesting. Nanomicro Lett. 16, 8 (2023).

    ADS  PubMed  PubMed Central  Google Scholar 

  112. Deng, W. et al. Capillary front broadening for water-evaporation-induced electricity of one kilovolt. Energy Environ. Sci. 16, 4442–4452 (2023).

    Article  CAS  Google Scholar 

  113. Zhang, L. et al. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015).

    Article  CAS  PubMed  Google Scholar 

  114. Velmurugan, V. et al. Single basin solar still with fin for enhancing productivity. Energy Convers. Manage. 49, 2602–2608 (2008).

    Article  Google Scholar 

  115. Zou, M. et al. 3D printing a biomimetic bridge-arch solar evaporator for eliminating salt accumulation with desalination and agricultural applications. Adv. Mater. 33, e2102443 (2021).

    Article  PubMed  Google Scholar 

  116. Cao, P. et al. Gradient heating effect modulated by hydrophobic/hydrophilic carbon nanotube network structures for ultrafast solar steam generation. ACS Appl. Mater. Interfaces 13, 19109–19116 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Ni, F. et al. Micro-/macroscopically synergetic control of switchable 2D/3D photothermal water purification enabled by robust, portable, and cost-effective cellulose papers. ACS Appl. Mater. Interfaces 11, 15498–15506 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Wang, W. et al. Solar seawater distillation by flexible and fully passive multistage membrane distillation. Nano Lett. 21, 5068–5074 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Zhu, L. et al. Self-contained monolithic carbon sponges for solar-driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 8, 1702149 (2018).

    Article  MathSciNet  Google Scholar 

  120. Li, R. et al. An integrated solar-driven system produces electricity with fresh water and crops in arid regions. Cell Rep. Phys. Sci. 3, 100781 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support by National Key Research and Development Program of China (2022YFB3803502), National Natural Science Foundation of China (52103076), the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University (CUSF-DH-D-2023001), special fund of Beijing Key Laboratory of Indoor Air Quality Evaluation and Control (No. BZ0344KF21-02), and State Key Laboratory of Electrical Insulation and Power Equipment (EIPE22203).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiyin Xu or Meifang Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Hao-Cheng Yang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, C., Cao, Y., Nie, H. et al. Structure integration and architecture of solar-driven interfacial desalination from miniaturization designs to industrial applications. Nat Water 2, 115–126 (2024). https://doi.org/10.1038/s44221-024-00200-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-024-00200-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing