Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Going beyond efficiency for solar evaporation

Abstract

Interfacial solar evaporation, which captures solar energy and localizes the generated heat for evaporating water molecules, is regarded as an important emerging strategy for solar energy conversion. In the past decade, global collective efforts have propelled fast and exciting advancements, with solar-to-vapour efficiencies approaching the thermodynamic limit. This has also spurred significant interest in many applications. However, improving the energy efficiency alone cannot move the field towards the practical development of these applications. A matrix of different factors and fundamental challenges should therefore be taken into consideration in addition to the solar-to-vapour efficiency or evaporation flux. In this Perspective we first discuss several promising applications of solar evaporation, and the corresponding figures of merit, for clean water production, wastewater and brine management, resource recovery, sterilization and power generation. We then discuss the fundamental aspects of solar evaporation that need to be determined, such as microscopic thermal transfer and water molecule bonding, which are closely related to evaporative performance. Finally, energy sources beyond solar energy will be discussed to further boost the evaporative performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key parameters for interfacial solar evaporation.

Similar content being viewed by others

References

  1. Neumann, O. et al. Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Ni, G. et al. Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy 17, 290–301 (2015).

    Article  CAS  Google Scholar 

  3. Wang, Z. et al. Bio‐inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small 10, 3234–3239 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Ghasemi, H. et al. Solar steam generation by heat localization. Nat. Commun. 5, 4449 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

    Article  CAS  Google Scholar 

  6. Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one Sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, N. et al. Mushrooms as efficient solar steam‐generation devices. Adv. Mater. 29, 1606762 (2017).

    Article  Google Scholar 

  9. Li, Y. et al. 3D‐printed, all‐in‐one evaporator for high‐efficiency solar steam generation under 1 sun illumination. Adv. Mater. 29, 1700981 (2017).

    Article  Google Scholar 

  10. Shi, L., Wang, Y., Zhang, L. & Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 5, 16212–16219 (2017).

    Article  CAS  Google Scholar 

  11. Finnerty, C., Zhang, L., Sedlak, D. L., Nelson, K. L. & Mi, B. Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. Environ. Sci. Technol. 51, 11701–11709 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Wang, Z. et al. Paper-based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. J. Mater. Chem. A 5, 16359–16368 (2017).

    Article  CAS  Google Scholar 

  13. Tao, P. et al. Solar-driven interfacial evaporation. Nat. Energy 3, 1031–1041 (2018).

    Article  Google Scholar 

  14. Chen, C., Kuang, Y. & Hu, L. Challenges and opportunities for solar evaporation. Joule 3, 683–718 (2019).

    Article  CAS  Google Scholar 

  15. Zhou, L., Li, X., Ni, G. W., Zhu, S. & Zhu, J. The revival of thermal utilization from the Sun: interfacial solar vapor generation. Natl Sci. Rev. 6, 562–578 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Shi, Y. et al. A 3D photothermal structure toward improved energy efficiency in solar steam generation. Joule 2, 1171–1186 (2018).

    Article  CAS  Google Scholar 

  18. Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).

    Article  CAS  Google Scholar 

  19. Liu, H. et al. High‐performance solar steam device with layered channels: artificial tree with a reversed design. Adv. Energy Mater. 8, 1701616 (2018).

    Article  Google Scholar 

  20. Wu, L. et al. Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nat. Commun. 11, 521 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xu, N. et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci. Adv. 5, eaaw7013 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang, L. et al. Highly efficient and salt rejecting solar evaporation via a wick-free confined water layer. Nat. Commun. 13, 849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li, X. et al. Three-dimensional artificial transpiration for efficient solar waste-water treatment. Natl Sci. Rev. 5, 70–77 (2018).

    Article  CAS  Google Scholar 

  24. Petela, R. Exergy of heat radiation. J. Heat Transfer 86, 187–192 (1964).

    Article  Google Scholar 

  25. Zhao, F., Guo, Y., Zhou, X., Shi, W. & Yu, G. Materials for solar-powered water evaporation. Nat. Rev. Mater. 5, 388–401 (2020).

    Article  Google Scholar 

  26. Raza, A., Lu, J.-Y., Alzaim, S., Li, H. & Zhang, T. Novel receiver-enhanced solar vapor generation: review and perspectives. Energies 11, 253 (2018).

    Article  Google Scholar 

  27. Zhu, L., Gao, M., Peh, C. K. N. & Ho, G. W. Recent progress in solar-driven interfacial water evaporation: advanced designs and applications. Nano Energy 57, 507–518 (2019).

    Article  CAS  Google Scholar 

  28. Zhang, P. et al. Direct solar steam generation system for clean water production. Energy Storage Mater. 18, 429–446 (2019).

    Article  Google Scholar 

  29. Zhang, C., Liang, H. Q., Xu, Z. K. & Wang, Z. Harnessing solar‐driven photothermal effect toward the water–energy nexus. Adv. Sci. 6, 1900883 (2019).

    Article  CAS  Google Scholar 

  30. Zhang, L. et al. Passive, high-efficiency thermally-localized solar desalination. Energy Environ. Sci. 14, 1771–1793 (2021).

    Article  CAS  Google Scholar 

  31. Zang, L. et al. Interfacial solar vapor generation for desalination and brine treatment: evaluating current strategies of solving scaling. Water Res. 198, 117135 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, Y. & Tan, S. C. Best practices for solar water production technologies. Nat. Sustain. 5, 554–556 (2022).

    Article  Google Scholar 

  33. Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Geng, Y. et al. Bioinspired fractal design of waste biomass‐derived solar–thermal materials for highly efficient solar evaporation. Adv. Funct. Mater. 31, 2007648 (2021).

    Article  CAS  Google Scholar 

  35. Ni, G. et al. A salt-rejecting floating solar still for low-cost desalination. Energy Environ. Sci. 11, 1510–1519 (2018).

    Article  CAS  Google Scholar 

  36. Dang, C. et al. Ultra salt-resistant solar desalination system via large-scale easy assembly of microstructural units. Energy Environ. Sci. 15, 5405–5414 (2022).

    Article  CAS  Google Scholar 

  37. Chen, L. et al. Low-cost and reusable carbon black based solar evaporator for effective water desalination. Desalination 483, 114412 (2020).

    Article  CAS  Google Scholar 

  38. Zhou, H., Xue, C., Chang, Q., Yang, J. & Hu, S. Assembling carbon dots on vertically aligned acetate fibers as ideal salt-rejecting evaporators for solar water purification. Chem. Eng. J. 421, 129822 (2021).

    Article  CAS  Google Scholar 

  39. Ibrahim, S., Bari, M. & Miles, L. Water Resources Management in Maldives with an Emphasis on Desalination (Pacific water, 2002); http://www.pacificwater.org/userfiles/file/Case%20Study%20B%20THEME%201%20Maldives%20on%20Desalination.pdf

  40. Ahmed, F. E., Hashaikeh, R. & Hilal, N. Solar powered desalination–technology, energy and future outlook. Desalination 453, 54–76 (2019).

    Article  CAS  Google Scholar 

  41. Gleick, P. H. Basic water requirements for human activities: meeting basic needs. Water Int. 21, 83–92 (1996).

    Article  Google Scholar 

  42. Moran, M. J., Shapiro, H. N., Boettner, D. D. & Bailey, M. B. Fundamentals of Engineering Thermodynamics (John Wiley & Sons, 2010).

  43. Bergman, T. L., Incropera, F. P., Dewitt, D. P. & Lavine, A. S. Fundamentals of Heat and Mass Transfer (John Wiley & Sons, 2011).

  44. Liu, Z. et al. Extremely cost‐effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Glob. Chall. 1, 1600003 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang, F. et al. A high-performing single-stage invert-structured solar water purifier through enhanced absorption and condensation. Joule 5, 1602–1612 (2021).

    Article  CAS  Google Scholar 

  46. Yao, H. et al. Janus-interface engineering boosting solar steam towards high-efficiency water collection. Energy Environ. Sci. 14, 5330–5338 (2021).

    Article  CAS  Google Scholar 

  47. Chiavazzo, E., Morciano, M., Viglino, F., Fasano, M. & Asinari, P. Passive solar high-yield seawater desalination by modular and low-cost distillation. Nat. Sustain. 1, 763–772 (2018).

    Article  Google Scholar 

  48. Xu, Z. et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ. Sci. 13, 830–839 (2020).

    Article  CAS  Google Scholar 

  49. Wang, W. et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10, 3012 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Brogioli, D., La Mantia, F. & Yip, N. Y. Thermodynamic analysis and energy efficiency of thermal desalination processes. Desalination 428, 29–39 (2018).

    Article  CAS  Google Scholar 

  51. Al-Karaghouli, A. & Kazmerski, L. L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sustain. Energy Rev. 24, 343–356 (2013).

    Article  CAS  Google Scholar 

  52. Kim, H. et al. Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science 356, 430–434 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. Tu, Y., Wang, R., Zhang, Y. & Wang, J. Progress and expectation of atmospheric water harvesting. Joule 2, 1452–1475 (2018).

    Article  CAS  Google Scholar 

  54. LaPotin, A., Kim, H., Rao, S. R. & Wang, E. N. Adsorption-based atmospheric water harvesting: impact of material and component properties on system-level performance. Acc. Chem. Res. 52, 1588–1597 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Zhou, X., Lu, H., Zhao, F. & Yu, G. Atmospheric water harvesting: a review of material and structural designs. ACS Mater. Lett. 2, 671–684 (2020).

    Article  CAS  Google Scholar 

  56. Hanikel, N., Prévot, M. S. & Yaghi, O. M. MOF water harvesters. Nat. Nanotechnol. 15, 348–355 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Shi, W., Guan, W., Lei, C. & Yu, G. Sorbents for atmospheric water harvesting: from design principles to applications. Angew. Chem. Int. Ed. 134, e202211267 (2022).

    Article  Google Scholar 

  58. Zhu, X. et al. Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 51, 6574–6651 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Y., Qi, Q., Fan, J., Wang, W. & Yu, D. Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep. Purif. Technol. 254, 117615 (2021).

    Article  CAS  Google Scholar 

  60. Menon, A. K., Haechler, I., Kaur, S., Lubner, S. & Prasher, R. S. Enhanced solar evaporation using a photo-thermal umbrella for wastewater management. Nat. Sustain. 3, 144–151 (2020).

    Article  Google Scholar 

  61. Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Jassby, D., Cath, T. Y. & Buisson, H. The role of nanotechnology in industrial water treatment. Nat. Nanotechnol. 13, 670–672 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Alvarez, P. J., Chan, C. K., Elimelech, M., Halas, N. J. & Villagrán, D. Emerging opportunities for nanotechnology to enhance water security. Nat. Nanotechnol. 13, 634–641 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Li, X. et al. Enhancement of interfacial solar vapor generation by environmental energy. Joule 2, 1331–1338 (2018).

    Article  CAS  Google Scholar 

  65. Li, J. et al. Over 10 kg m−2 h−1 evaporation rate enabled by a 3D interconnected porous carbon foam. Joule 4, 928–937 (2020).

    Article  CAS  Google Scholar 

  66. Shi, Y. et al. Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. Environ. Sci. Technol. 52, 11822–11830 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Finnerty, C. T. et al. Interfacial solar evaporation by a 3D graphene oxide stalk for highly concentrated brine treatment. Environ. Sci. Technol. 55, 15435–15445 (2021).

    Article  CAS  PubMed  Google Scholar 

  68. Zheng, S. et al. Upscaling 3D engineered trees for off-grid desalination. Environ. Sci. Technol. 56, 1289–1299 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. He, S. et al. Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. Energy Environ. Sci. 12, 1558–1567 (2019).

    Article  CAS  Google Scholar 

  70. Zhou, X., Zhao, F., Guo, Y., Zhang, Y. & Yu, G. A hydrogel-based antifouling solar evaporator for highly efficient water desalination. Energy Environ. Sci. 11, 1985–1992 (2018).

    Article  CAS  Google Scholar 

  71. Dong, X., Cao, L., Si, Y., Ding, B. & Deng, H. Cellular structured CNTs@SiO2 nanofibrous aerogels with vertically aligned vessels for salt‐resistant solar desalination. Adv. Mater. 32, 1908269 (2020).

    Article  CAS  Google Scholar 

  72. Xu, W. et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. Adv. Energy Mater. 8, 1702884 (2018).

    Article  Google Scholar 

  73. Chen, X. et al. Sustainable off-grid desalination of hypersaline waters using Janus wood evaporators. Energy Environ. Sci. 14, 5347–5357 (2021).

    Article  CAS  Google Scholar 

  74. Zhao, H.-Y. et al. Lotus-inspired evaporator with Janus wettability and bimodal pores for solar steam generation. Cell Rep. Phys. Sci. 1, 100074 (2020).

    Article  Google Scholar 

  75. Zhao, W. et al. Hierarchically designed salt‐resistant solar evaporator based on Donnan effect for stable and high‐performance brine treatment. Adv. Funct. Mater. 31, 2100025 (2021).

    Article  CAS  Google Scholar 

  76. Zhang, C. et al. Designing a next generation solar crystallizer for real seawater brine treatment with zero liquid discharge. Nat. Commun. 12, 998 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Xu, N. et al. A scalable fish-school inspired self-assembled particle system for solar-powered water-solute separation. Natl Sci. Rev. 8, nwab065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mi, B. Interfacial solar evaporator for brine treatment: the importance of resilience to high salinity. Natl Sci. Rev. 8, nwab118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kunjaram, U. P. U. et al. A self‐salt‐cleaning architecture in cold vapor generation system for hypersaline brines. Ecomat 4, e12168 (2022).

    Article  CAS  Google Scholar 

  80. Cooper, T. A. et al. Contactless steam generation and superheating under one sun illumination. Nat. Commun. 9, 5086 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Li, H. et al. Side area‐assisted 3D evaporator with antibiofouling function for ultra‐efficient solar steam generation. Adv. Mater. 33, 2102258 (2021).

    Article  CAS  Google Scholar 

  82. Huang, L. et al. Laser-engineered graphene on wood enables efficient antibacterial, anti-salt-fouling, and lipophilic-matter-rejection solar evaporation. ACS Appl. Mater. Interf. 12, 51864–51872 (2020).

    Article  CAS  Google Scholar 

  83. Guo, Y., Dundas, C. M., Zhou, X., Johnston, K. P. & Yu, G. Molecular engineering of hydrogels for rapid water disinfection and sustainable solar vapor generation. Adv. Mater. 33, 2102994 (2021).

    Article  CAS  Google Scholar 

  84. Liu, C. et al. Rapid water disinfection using vertically aligned MoS2 nanofilms and visible light. Nat. Nanotechnol. 11, 1098–1104 (2016).

    Article  CAS  PubMed  Google Scholar 

  85. Wu, X. et al. Dual‐zone photothermal evaporator for antisalt accumulation and highly efficient solar steam generation. Adv. Funct. Mater. 31, 2102618 (2021).

    Article  CAS  Google Scholar 

  86. Li, L. et al. Highly salt‐resistant 3D hydrogel evaporator for continuous solar desalination via localized crystallization. Adv. Funct. Mater. 31, 2104380 (2021).

    Article  CAS  Google Scholar 

  87. Xia, Y. et al. A self-rotating solar evaporator for continuous and efficient desalination of hypersaline brine. J. Mater. Chem. A 8, 16212–16217 (2020).

    Article  CAS  Google Scholar 

  88. Xia, Y. et al. Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. Energy Environ. Sci. 12, 1840–1847 (2019).

    Article  CAS  Google Scholar 

  89. Dion, M. & Parker, W. Steam sterilization principles. Pharm. Eng. 33, 1–8 (2013).

    Google Scholar 

  90. Neumann, O. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl Acad. Sci. USA 110, 11677–11681 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li, J. et al. Interfacial solar steam generation enables fast-responsive, energy-efficient, and low-cost off-grid sterilization. Adv. Mater. 30, e1805159 (2018).

    Article  PubMed  Google Scholar 

  92. Zhao, L. et al. A passive high-temperature high-pressure solar steam generator for medical sterilization. Joule 4, 2733–2745 (2020).

    Article  CAS  Google Scholar 

  93. Zhang, Y. et al. Floating rGO-based black membranes for solar driven sterilization. Nanoscale 9, 19384–19389 (2017).

    Article  CAS  PubMed  Google Scholar 

  94. Boca, B., Pretorius, E., Gochin, R., Chapoullie, R. & Apostolides, Z. An overview of the validation approach for moist heat sterilization, part I. Pharm. Technol. 26, 62–71 (2002).

    Google Scholar 

  95. Weinstein, L. A. et al. Concentrating solar power. Chem. Rev. 115, 12797–12838 (2015).

    Article  CAS  PubMed  Google Scholar 

  96. Gao, M., Peh, C. K., Phan, H. T., Zhu, L. & Ho, G. W. Solar absorber gel: localized macro-nano heat channeling for efficient plasmonic Au nanoflowers photothermic vaporization and triboelectric generation. Adv. Energy Mater. 8, 1800711 (2018).

    Article  Google Scholar 

  97. Zhu, L., Gao, M., Peh, C. K. N., Wang, X. & Ho, G. W. Self‐contained monolithic carbon sponges for solar‐driven interfacial water evaporation distillation and electricity generation. Adv. Energy Mater. 8, 1702149 (2018).

    Article  Google Scholar 

  98. Jiang, M. et al. Bioinspired temperature regulation in interfacial evaporation. Adv. Funct. Mater. 30, 1910481 (2020).

    Article  CAS  Google Scholar 

  99. Gao, M., Zhu, L., Peh, C. K. & Ho, G. W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ. Sci. 12, 841–864 (2019).

    Article  CAS  Google Scholar 

  100. Zhu, L., Ding, T., Gao, M., Peh, C. K. N. & Ho, G. W. Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. Adv. Energy Mater. 9, 1900250 (2019).

    Article  Google Scholar 

  101. Li, X. et al. Storage and recycling of interfacial solar steam enthalpy. Joule 2, 2477–2484 (2018).

    Article  Google Scholar 

  102. Yin, J., Zhou, J., Fang, S. & Guo, W. Hydrovoltaic energy on the way. Joule 4, 1852–1855 (2020).

    Article  Google Scholar 

  103. Xue, G. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, Z. et al. Emerging hydrovoltaic technology. Nat. Nanotechnol. 13, 1109–1119 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Huang, Y., Cheng, H. & Qu, L. Emerging materials for water-enabled electricity generation. ACS Mater. Lett. 3, 193–209 (2021).

    Article  CAS  Google Scholar 

  106. Shen, D. et al. Moisture-enabled electricity generation: from physics and materials to self-powered applications. Adv. Mater. 32, e2003722 (2020).

    Article  PubMed  Google Scholar 

  107. Li, R., Shi, Y., Wu, M., Hong, S. & Wang, P. Photovoltaic panel cooling by atmospheric water sorption–evaporation cycle. Nat. Sustain. 3, 636–643 (2020).

    Article  Google Scholar 

  108. Xu, N. et al. Synergistic tandem solar electricity-water generators. Joule 4, 347–358 (2020).

    Article  Google Scholar 

  109. Wang, W. et al. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 5, 1873–1887 (2021).

    Article  Google Scholar 

  110. Cui, L. et al. High rate production of clean water based on the combined photo‐electro‐thermal effect of graphene architecture. Adv. Mater. 30, 1706805 (2018).

    Article  Google Scholar 

  111. Wei, H., Loeb, S. K., Halas, N. J. & Kim, J.-H. Plasmon-enabled degradation of organic micropollutants in water by visible-light illumination of Janus gold nanorods. Proc. Natl Acad. Sci. USA 117, 15473–15481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Article  Google Scholar 

  113. Zhang, H.-C. et al. Photothermal nanoconfinement reactor: boosting chemical reactivity with locally high temperature in a confined space. Angew. Chem. Int. Ed. 134, e202200093 (2022).

    Google Scholar 

  114. Zhou, X., Zhao, F., Guo, Y., Rosenberger, B. & Yu, G. Architecting highly hydratable polymer networks to tune the water state for solar water purification. Sci. Adv. 5, eaaw5484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhao, F. et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat. Nanotechnol. 13, 489–495 (2018).

    Article  CAS  PubMed  Google Scholar 

  116. Song, H. et al. Cold vapor generation beyond the input solar energy limit. Adv. Sci. 5, 1800222 (2018).

    Article  Google Scholar 

  117. Wang, Y., Wu, X., Yang, X., Owens, G. & Xu, H. Reversing heat conduction loss: extracting energy from bulk water to enhance solar steam generation. Nano Energy 78, 105269 (2020).

    Article  CAS  Google Scholar 

  118. Hong, S. et al. Nature-inspired, 3D origami solar steam generator toward near full utilization of solar energy. ACS Appl. Mater. Interf. 10, 28517–28524 (2018).

    Article  CAS  Google Scholar 

  119. Qian, X. et al. Artificial phototropism for omnidirectional tracking and harvesting of light. Nat. Nanotechnol. 14, 1048–1055 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.Z. acknowledges support from the XPLORER PRIZE. This work was jointly supported by the National Natural Science Foundation of China (grant numbers 51925204, 52102262, 92262305, 52003116, 12022403 and 52002168), the Natural Science Foundation of Jiangsu Province (grant numbers BK20200340 and BK20220035) and the National Key Research and Development Program of China (grant numbers 2022YFB3804902 and 2022YFA1404704).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., B.M., P.W., N.X. and J.L. contributed to the concept of this work. J.Z., N.X. and J.L. wrote the paper. B.M., P.W., C.F., Y.S., L.Z. and B.Z. contributed to discussions and wrote parts of the manuscript.

Corresponding authors

Correspondence to Peng Wang, Baoxia Mi or Jia Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Sai Kiran Hota and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, N., Li, J., Finnerty, C. et al. Going beyond efficiency for solar evaporation. Nat Water 1, 494–501 (2023). https://doi.org/10.1038/s44221-023-00086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00086-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing