Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multifunctional zwitterionic hydrogels for the rapid elimination of organic and inorganic micropollutants from water

Abstract

The elimination of micropollutants from water is challenging due to their chemical diversity, low concentrations and slow uptake by industrial adsorbents. Here we report a tunable multifunctional hydrogel platform for the rapid absorption of organic and inorganic micropollutants in a single step. Zwitterionic backbones increase mesh size while simultaneously adding counterion-free adsorption sites, enabling the removal of diverse micropollutants at least 10 times more rapidly than a commercial activated carbon–ion exchange resin mixture and 100 times faster than other multifunctional adsorbents. The hydrogels are prepared by a facile synthesis and form factors can be tailored for specific applications, such as microparticles for use in packed beds or tablets in portable water treatment. We demonstrate their effectiveness in treating complex contaminant mixtures, including in the presence of background hardness. Lower compressibility, rapid mass transport and high stability make zwitterionic hydrogels scalable for real-world applications in the efficient treatment of highly contaminated water to below regulatory limits for extended periods of time.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and use of zwitterionic hydrogel absorbents.
Fig. 2: Uptake of micropollutants by hydrogel microparticles.
Fig. 3: Kinetics of micropollutant uptake.
Fig. 4: Practical applications of zwitterionic hydrogels in water treatment.

Similar content being viewed by others

Data availability

The data supporting the findings in this study are available within the paper and its Supplementary Information. All other data are available from the authors upon reasonable request. Source data are provided with this paper.

References

  1. Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Richardson, S. D. & Ternes, T. A. Water analysis: emerging contaminants and current issues. Anal. Chem. 86, 2813–2848 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Glassmeyer, S. T. et al. Nationwide reconnaissance of contaminants of emerging concern in source and treated drinking waters of the United States. Sci. Total Environ. 581–582, 909–922 (2017).

    Article  PubMed  Google Scholar 

  4. Kolpin, D. W. et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environ. Sci. Technol. 36, 1202–1211 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Jobling, S., Nolan, M., Tyler, C. R., Brighty, G. & Sumpter, J. P. Widespread sexual disruption in wild fish. Environ. Sci. Technol. 32, 2498–2506 (1998).

    Article  CAS  Google Scholar 

  6. Matthiessen, P. & Gibbs, P. E. Critical appraisal of the evidence for tributyltin-mediated endocrine disruption in mollusks. Environ. Toxicol. Chem. 17, 37–43 (2009).

    Google Scholar 

  7. Steenland, K., Fletcher, T. & Savitz, D. A. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ. Health Perspect. 118, 1100–1108 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Acconcia, F., Pallottini, V. & Marino, M. Molecular mechanisms of action of BPA. Dose Response 13, 1559325815610582 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Murray, K. E., Thomas, S. M. & Bodour, A. A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment. Environ. Pollut. 158, 3462–3471 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Daughton, C. G. & Ternes, T. A. Pharmaceuticals and personal care products in the environment: agents of subtle change? Environ. Health Perspect. 107, 907–938 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morell, F. M. M., Kraepiel, A. M. L. & Amyot, M. The chemical cycle and bioaccumulation of mercury. Annu. Rev. Ecol. Evol. Syst. 29, 543–566 (1998).

    Article  Google Scholar 

  12. van der Oost, R., Beyer, J. & Vermeulen, N. P. E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ. Toxicol. Pharmacol. 13, 57–149 (2003).

    Article  PubMed  Google Scholar 

  13. Luo, Y. et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473–474, 619–641 (2014).

    Article  PubMed  Google Scholar 

  14. Stackelberg, P. E. et al. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 377, 255–272 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Ternes, T. The occurrence of micopollutants in the aquatic environment: a new challenge for water management. Water Sci. Technol. 55, 327–332 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol. Lett. 131, 5–17 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Zuloaga, O. et al. Overview of extraction, clean-up and detection techniques for the determination of organic pollutants in sewage sludge: a review. Anal. Chim. Acta 736, 7–29 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. Alsbaiee, A. et al. Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer. Nature 529, 190–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Song, X. et al. β-Cyclodextrin-polyacrylamide hydrogel for removal of organic micropollutants from water. Molecules 26, 5031 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu, P. et al. Rejection of emerging organic micropollutants in nanofiltration–reverse osmosis membrane applications. Water Environ. Res. 77, 40–48 (2017).

    Article  Google Scholar 

  21. Albergamo, V. et al. Removal of polar organic micropollutants by pilot-scale reverse osmosis drinking water treatment. Water Res. 148, 535–545 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Kovalova, L., Knappe, D. R. U., Lehnberg, K., Kazner, C. & Hollender, J. Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ. Sci. Pollut. Res. Int. 20, 3607–3615 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling (de Gruyter, 2012).

  24. Gadipelly, C. et al. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Ind. Eng. Chem. Res. 53, 11571–11592 (2014).

    Article  CAS  Google Scholar 

  25. Verma, M. et al. Simultaneous removal of heavy metals and ciprofloxacin micropollutants from wastewater using ethylenediaminetetraacetic acid-functionalized β-cyclodextrin-chitosan adsorbent. ACS Omega 6, 34624–34634 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Drinking Water Contaminant Candidate List (CCL) and Regulatory Determination (US Environmental Protection Agency, accessed 31 January 2023); https://www.epa.gov/ccl

  27. Water Framework Directive (European Commission, accessed 31 January 2023); https://environment.ec.europa.eu/topics/water/water-framework-directive_en

  28. Qin, X. et al. β-Cyclodextrin-crosslinked polymeric adsorbent for simultaneous removal and stepwise recovery of organic dyes and heavy metal ions: fabrication, performance and mechanisms. Chem. Eng. J. 372, 1007–1018 (2019).

    Article  CAS  Google Scholar 

  29. Zhao, F. et al. EDTA-cross-linked β-cyclodextrin: an environmentally friendly bifunctional adsorbent for simultaneous adsorption of metals and cationic dyes. Environ. Sci. Technol. 49, 10570–10580 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Chen, M., Bi, R., Zhang, R., Yang, F. & Chen, F. Tunable surface charge and hydrophilicity of sodium polyacrylate intercalated layered double hydroxide for efficient removal of dyes and heavy metal ions. Colloids Surf. A 617, 126384 (2021).

    Article  CAS  Google Scholar 

  31. Fundneider, T. et al. Empty bed contact time: the key for micropollutant removal in activated carbon filters. Water Res. 191, 116765 (2021).

    Article  CAS  PubMed  Google Scholar 

  32. Gokhale, D., Chen, I. & Doyle, P. S. Micelle-laden hydrogel microparticles for the removal of hydrophobic micropollutants from water. ACS Appl. Polym. Mater. 4, 746–754 (2022).

    Article  CAS  Google Scholar 

  33. Activated carbon filters. Lenntech https://www.lenntech.com/systems/deep/activated-carbon/gacfilter.htm (2023).

  34. Liu, S., Tang, J., Ji, F., Lin, W. & Chen, S. Recent advances in zwitterionic hydrogels: preparation, property, and biomedical application. Gels 8, 46 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kaner, P., Dudchenko, A. V., Mauter, M. S. & Asatekin, A. Zwitterionic copolymer additive architecture affects membrane performance: fouling resistance and surface rearrangement in saline solutions. J. Mater. Chem. A 7, 4829–4846 (2019).

    Article  CAS  Google Scholar 

  36. Wu, Z. et al. Tough porous nanocomposite hydrogel for water treatment. J. Hazard. Mater. 421, 126754 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. National primary drinking water regulations. US Environmental Protection Agency https://www.epa.gov/sites/default/files/2016-06/documents/npwdr_complete_table.pdf (2023).

  38. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda (World Health Organization, 2022); https://www.who.int/teams/environment-climate-change-and-health/water-sanitation-and-health/water-safety-and-quality/drinking-water-quality-guidelines

  39. Gokhale, D., Chen, I. & Doyle, P. S. Coarse-grained molecular dynamics simulations of immobilized micelle systems and their interactions with hydrophobic molecules. Soft Matter 18, 4625–4637 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Macbeth, A. J., Lin, Z. & Goddard, J. M. General method for emulsion polymerization to yield functional terpolymers. MethodsX 7, 101110 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miguel, G. S., Lambert, S. D. & Graham, N. J. D. The regeneration of field-spent granular-activated carbons. Water Res. 35, 2740–2748 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Chiang, P. C., Chang, E. E. & Wu, J. S. Comparison of chemical and thermal regeneration of aromatic compounds on exhausted activated carbon. Water Sci. Technol. 35, 279–285 (1997).

    Article  CAS  Google Scholar 

  43. Godfrin, P. D., Lee, H., Lee, J. H. & Doyle, P. S. Photopolymerized micelle-laden hydrogels can simultaneously form and encapsulate nanocrystals to improve drug substance solubility and expedite drug product design. Small 15, 1803372 (2019).

    Article  Google Scholar 

  44. Sikorski, P., Mo, F., Skjak-Braek, G. & Stokke, B. T. Evidence for egg-box-compatible interactions in calcium–alginate gels from fiber X-ray diffraction. Biomacromolecules 8, 2098–2103 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Son, C. Y. & Wang, Z.-G. Ion transport in small-molecule and polymer electrolytes. J. Chem. Phys. 153, 100903 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. An, H. Z., Safai, E. R., Eral, H. B. & Doyle, P. S. Synthesis of biomimetic oxygen-carrying compartmentalized microparticles using flow lithography. Lab Chip 13, 4765–4774 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. DuChanois, R. M. et al. Designing polymeric membranes with coordination chemistry for high-precision ion separations. Sci. Adv. 8, 9436 (2022).

    Article  Google Scholar 

  48. Czerner, M., Fellay, L. S., Suarez, M. P., Frontini, P. M. & Fasce, L. A. Determination of elastic modulus of gelatin gels by indentation experiments. Procedia Mater. Sci. 8, 287–296 (2015).

    Article  CAS  Google Scholar 

  49. Jin, P., Jin, X., Wang, X., Feng, Y. & Wang, X. C. in Biomass Now—Cultivation and Utilization (ed. Matovic, M. D.) Ch. 7 (IntechOpen, 2013).

  50. Ferguson, P., Sherrington, D. C. & Gough, A. Preparation, characterization and use in emulsion polymerization of acrylated alkyl ethoxylate surface-active monomers. Polymer 34, 3281–3292 (1993).

    Article  CAS  Google Scholar 

  51. Li, W. et al. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 47, 5646–5683 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhusari, S., Sankaran, S. & del Campo, A. Regulating bacterial behavior within hydrogels of tunable viscoelasticity. Adv. Sci. 9, 2106026 (2022).

    Article  Google Scholar 

  53. Huntscha, S., Singer, H. P., McArdell, C. S., Frank, C. E. & Hollender, J. Multiresidue analysis of 88 polar organic micropollutants in ground, surface and wastewater using online mixed-bed multilayer solid-phase extraction coupled to high performance liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 1268, 74–83 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the MIT Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). D.G. also thanks the Rasikbhai L. Meswani Fellowship for Water Solutions for funding. A.F.H. also thanks the MIT Undergraduate Research Opportunities Program for funding. D.G. also thanks I. Yadav, J. D. J. Rathinaraj, A. J. Okyere, L. Attia and W.-N. Wu for experimental support.

Author information

Authors and Affiliations

Authors

Contributions

D.G. and P.S.D. conceived and designed the project and prepared the paper. D.G. and A.F.H. planned and performed the experiments. D.G. analysed the data. All of the authors participated in discussions.

Corresponding author

Correspondence to Patrick S. Doyle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Despina Fragouli, Jun Li and Canhui Yang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1.1–1.8, Methods 2.1–2.6, Figs. 1–16, information on Video 1 and source data, and references.

Supplementary Video 1

Use of hydrogel microparticles to rapidly treat a solution of iron at very high concentration (10 g l−1).

Supplementary Data 1

Compositions and internal and supernatant concentrations of micropollutants for experiments performed as part of this study.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gokhale, D., Hamelberg, A.F. & Doyle, P.S. Multifunctional zwitterionic hydrogels for the rapid elimination of organic and inorganic micropollutants from water. Nat Water 2, 62–71 (2024). https://doi.org/10.1038/s44221-023-00180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00180-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing