Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perspectives of compound-specific isotope analysis of organic contaminants for assessing environmental fate and managing chemical pollution

Abstract

The management and mitigation of chemical pollution are key elements of sustainable development initiatives that aim to provide safe and clean water. While environmental scientists are developing the capabilities to assess the fate, (eco)toxicity and risks of a plethora of synthetic chemicals comprehensively, notorious pollution scenarios and decontamination challenges call for targeted and case-specific evaluation of chemical hazards. Here we review the utility and perspectives of compound-specific isotope analysis for obtaining an understanding of environmental processes that allows one to identify pollution sources, assess contaminant (bio)transformation and gain insights into reaction pathways. Using three prototypical scenarios of water contamination, namely point-source pollution of groundwater at contaminated sites, diffuse pollution of soils and surface waters through pesticide use and the abatement of pharmaceuticals and disinfection by-products in water treatment systems, we illustrate both success stories of compound-specific isotope analysis and current developments to address challenges for future applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prototypical water pollution from point-sources, diffuse release of chemicals and from transformation during water treatment.
Fig. 2: CSIA-based assessment of point-source groundwater contamination with a mixture of benzene, toluene, ethylbenzene and xylenes (BTEX).
Fig. 3: Source apportionment.
Fig. 4: Two scenarios for the assessment of diffuse pollution with CSIA.
Fig. 5: Compound-specific isotope analysis for studying water treatment systems.

Similar content being viewed by others

References

  1. A Framework for Freshwater Ecosystem Management (United Nations Environment Programme, 2017).

  2. Global Chemicals Outlook II: From Legacies to Innovative Solutions: Implementing the 2030 Agenda for Sustainable Development (United Nations Environment Programme, 2019).

  3. Bernhardt, E. S., Rosi, E. J. & Gessner, M. O. Synthetic chemicals as agents of global change. Front. Ecol. Environ. 15, 84–90 (2017).

    Article  Google Scholar 

  4. Brack, W. et al. One planet: one health. A call to support the initiative on a global science–policy body on chemicals and waste. Environ. Sci. Eur. 34, 21 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gleeson, T., Cuthbert, M., Ferguson, G. & Perrone, D. Global groundwater sustainability, resources, and systems in the anthropocene. Annu. Rev. Earth Planet. Sci. 48, 431–463 (2020).

    Article  CAS  Google Scholar 

  6. Wang, J. et al. Towards a systematic method for assessing the impact of chemical pollution on ecosystem services of water systems. J. Environ. Manage. 281, 111873 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Sachs, J., Kroll, C., Lafortune, G., Fuller, G. & Woelm, F. Sustainable Development Report 2022: From Crisis to Sustainable Development: The SDGs as Roadmap to 2030 and Beyond (Cambridge Univ. Press, 2022).

  8. Environmental Engineering for the 21st Century: Addressing Grand Challenges (National Academies, 2019).

  9. Persson, L. et al. Outside the safe operating space of the planetary boundary for novel entities. Environ. Sci. Technol. 56, 1510–1521 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475 (2009).

    Article  PubMed  Google Scholar 

  11. Wang, Z. et al. We need a global science-policy body on chemicals and waste. Science 371, 774–776 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Fenner, K. & Scheringer, M. The need for chemical simplification as a logical consequence of ever-increasing chemical pollution. Environ. Sci. Technol. 55, 14470–14472 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Kümmerer, K., Clark, J. H. & Zuin, V. G. Rethinking chemistry for a circular economy. Science 367, 369–370 (2020).

    Article  PubMed  Google Scholar 

  14. Cousins, I. T. et al. Finding essentiality feasible: common questions and misinterpretations concerning the ‘essential-use’ concept. Environ. Sci. 23, 1079–1087 (2021).

    CAS  Google Scholar 

  15. Wang, Z., Walker, G. W., Muir, D. C. G. & Nagatani-Yoshida, K. Toward a global understanding of chemical pollution: a first comprehensive analysis of national and regional chemical inventories. Environ. Sci. Technol. 54, 2575–2584 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Arp, H. P. H. & Hale, S. E. REACH: Improvement of Guidance and Methods for the Identification and Assessment of PMT/vPvM Substances Vol. 126/2019 (Umweltbundesamt, 2019).

  17. Arp, H. P. H. & Hale, S. E. Assessing the persistence and mobility of organic substances to protect freshwater resources. ACS Environ. Au 2, 482–509 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hale, S. E., Arp, H. P. H., Schliebner, I. & Neumann, M. Persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances pose an equivalent level of concern to persistent, bioaccumulative and toxic (PBT) and very persistent and very bioaccumulative (vPvB) substances under REACH. Environ. Sci. Eur. 32, 155 (2020).

    Article  CAS  Google Scholar 

  19. Li, L. et al. Retrieval, selection, and evaluation of chemical property data for assessments of chemical emissions, fate, hazard, exposure, and risks. ACS Environ. Au 2, 376–395 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Evich, M. G. et al. Per- and polyfluoroalkyl substances in the environment. Science 375, eabg9065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Qu, S. et al. Product-to-parent reversion of trenbolone: unrecognized risks for endocrine disruption. Science 342, 347–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vuckovic, D. et al. Conversion of oxybenzone sunscreen to phototoxic glucoside conjugates by sea anemones and corals. Science 376, 644–648 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Tian, Z. et al. A ubiquitous tire rubber–derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U. & Wehrli, B. Global water pollution and human health. Annu. Rev. Environ. Resour. 35, 109–136 (2010).

    Article  Google Scholar 

  25. Hungerbühler, K., Boucher, J. M., Pereira, C., Roiss, T. & Scheringer, M. Chemical Products and Processes: Foundations of Environmentally Oriented Design (Springer, 2021).

  26. Elsner, M. Stable isotope fractionation to investigate natural transformation mechanisms of organic contaminants: principles, prospects and limitations. J. Environ. Monit. 12, 2005 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Elsner, M. et al. Current challenges in compound-specific stable isotope analysis of environmental organic contaminants. Anal. Bioanal. Chem. 403, 2471–2491 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Hofstetter, T. B., Schwarzenbach, R. P. & Bernasconi, S. M. Assessing transformation processes of organic compounds using stable isotope fractionation. Environ. Sci. Technol. 42, 7737–7743 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Wolfsberg, M., Hook, W. A., Paneth, P. & Rebelo, L. P. N. Isotope Effects in the Chemical, Geological, and Bio Sciences (Springer, 2009).

  30. Kohen, A. & Limbach, H.-H. (eds) Isotope Effects In Chemistry and Biology 1st edn (CRC, 2005).

  31. Northrop, D. B. The expression of isotope effects on enzyme-catalyzed reactions. Annu. Rev. Biochem. 50, 103–131 (1981).

    Article  CAS  PubMed  Google Scholar 

  32. Aelion, C. M., Höhener, P., Hunkeler, D. & Aravena, R. (eds) Environmental Isotopes in Biodegradation and Bioremediation (CRC, 2009).

  33. Thullner, M., Centler, F., Richnow, H.-H. & Fischer, A. Quantification of organic pollutant degradation in contaminated aquifers using compound specific stable isotope analysis – review of recent developments. Org. Geochem. 42, 1440–1460 (2012).

    Article  Google Scholar 

  34. Bouchard, D., Höhener, P. & Hunkeler, D. Carbon isotope fractionation during volatilization of petroleum hydrocarbons and diffusion across a porous medium: a column experiment. Environ. Sci. Technol. 42, 7801–7806 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Bouchard, D. et al. Carbon isotope fractionation during diffusion and biodegradation of petroleum hydrocarbons in the unsaturated zone: field experiment at Vaerlose Airbase, Denmark, and modeling. Environ. Sci. Technol. 42, 596–601 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Eckert, D., Rolle, M. & Cirpka, O. A. Numerical simulation of isotope fractionation in steady-state bioreactive transport controlled by transverse mixing. J. Contam. Hydrol. 140–141, 95–106 (2012).

    Article  PubMed  Google Scholar 

  37. Rolle, M. & Jin, B. Normal and inverse diffusive isotope fractionation of deuterated toluene and benzene in aqueous systems. Environ. Sci. Technol. Lett. 4, 298–304 (2017).

    Article  CAS  Google Scholar 

  38. Eckert, D., Qiu, S., Elsner, M. & Cirpka, O. A. Model complexity needed for quantitative analysis of high resolution isotope and concentration data from a toluene-pulse experiment. Environ. Sci. Technol. 47, 6900–6907 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Sun, F., Peters, J., Thullner, M., Cirpka, O. A. & Elsner, M. Magnitude of diffusion- and transverse dispersion-induced isotope fractionation of organic compounds in aqueous systems. Environ. Sci. Technol. 55, 4772–4782 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fischer, A. et al. Applicability of stable isotope fractionation analysis for the characterization of benzene biodegradation in a BTEX-contaminated aquifer. Environ. Sci. Technol. 41, 3689–3696 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Vogt, C., Dorer, C., Musat, F. & Richnow, H.-H. Multi-element isotope fractionation concepts to characterize the biodegradation of hydrocarbons — from enzymes to the environment. Curr. Opin. Biotechnol. 41, 90–98 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Fischer, A. et al. Combined carbon and hydrogen isotope fractionation investigations for elucidating benzene biodegradation pathways. Environ. Sci. Technol. 42, 4356–4363 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Hunkeler, D. in Advances in Subsurface Pollution of Porous Media: Indicators, Processes and Modelling (eds Candela, L., Vadillo, I. & Elorza, F. J.) 31–44 (CRC/Taylor & Francis, 2008).

  44. Hunkeler, D. & Aravena, R. in Environmental Isotopes in Biodegradation and Bioremediation Ch. 8 (CRC, 2009).

  45. Höhener, P. & Imfeld, G. Quantification of lambda (λ) in multi-elemental compound-specific isotope analysis. Chemosphere 267, 129232 (2021).

    Article  PubMed  Google Scholar 

  46. Nijenhuis, I. & Richnow, H. H. Stable isotope fractionation concepts for characterizing biotransformation of organohalides. Curr. Opin. Biotechnol. 41, 108–113 (2016).

    Article  CAS  PubMed  Google Scholar 

  47. Elsner, M., McKelvie, J., Lacrampe-Couloume, G. & Sherwood Lollar, B. Insight into methyl tert-butyl ether (MTBE) stable isotope fractionation from abiotic reference experiments. Environ. Sci. Technol. 41, 5693–5700 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Wijker, R. S., Adamczyk, P., Bolotin, J., Paneth, P. & Hofstetter, T. B. Isotopic analysis of oxidative pollutant degradation pathways exhibiting large H isotope fractionation. Environ. Sci. Technol. 47, 13459–13468 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Sullivan Ojeda, A., Phillips, E. & Sherwood Lollar, B. Multi-element (C, H, Cl, Br) stable isotope fractionation as a tool to investigate transformation processes for halogenated hydrocarbons. Environ. Sci. 22, 567–582 (2020).

    Google Scholar 

  50. Bouchard, D. et al. Diagnostic tools to assess mass removal processes during pulsed air sparging of a petroleum hydrocarbon source zone. Groundw. Monit. Remed. 38, 29–44 (2018).

    Article  CAS  Google Scholar 

  51. Hunkeler, D., Aravena, R. & Butler, B. Monitoring microbial dechlorination of tetrachloroethene (PCE) in groundwater using compound-specific stable carbon isotope ratios: microcosm and field studies. Environ. Sci. Technol. 33, 2733–2738 (1999).

    Article  CAS  Google Scholar 

  52. Hunkeler, D., Aravena, R. & Cox, E. Carbon isotopes as a tool to evaluate the origin and fate of vinyl chloride: laboratory experiments and modeling of isotope evolution. Environ. Sci. Technol. 36, 3378–3384 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Hunkeler, D., Aravena, R., Berry-Spark, K. & Cox, E. Assessment of degradation pathways in an aquifer with mixed chlorinated hydrocarbon contamination using stable isotope analysis. Environ. Sci. Technol. 39, 5975–5981 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Audí-Miró, C. et al. C, Cl, and H compound-specific isotope analysis to assess natural versus Fe(0) barrier-induced degradation of chlorinated ethenes at a contaminated site. J. Hazard. Mater. 299, 747–754 (2015).

    Article  PubMed  Google Scholar 

  55. Badin, A. et al. Identification of abiotic and biotic reductive dechlorination in a chlorinated ethene plume after thermal source remediation by means of isotopic and molecular biology tools. J. Contam. Hydrol. 192, 1–19 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Sherwood Lollar, B. et al. Stable carbon isotope evidence for intrinsic bioremediation of tetrachloroethene and trichloroethene at Area 6, Dover Air Force Base. Environ. Sci. Technol. 35, 261–269 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. De Vera, J. et al. Compound-specific isotope analysis (CSIA) evaluation of degradation of chlorinated benzenes (CBs) and benzene in a contaminated aquifer. J. Contam. Hydrol. 250, 104051 (2022).

    Article  PubMed  Google Scholar 

  58. Gilevska, T. et al. Multi-element isotopic evidence for monochlorobenzene and benzene degradation under anaerobic conditions in contaminated sediments. Water Res. 207, 117809 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Palau, J. et al. Use of dual carbon–chlorine isotope analysis to assess the degradation pathways of 1,1,1-trichloroethane in groundwater. Water Res. 92, 235–243 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Koster van Groos, P. G. et al. Carbon isotope fractionation of 1,2-dibromoethane by biological and abiotic processes. Environ. Sci. Technol. 52, 3440–3448 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Stelzer, N. et al. Integrative approach to delineate natural attenuation of chlorinated benzenes in anoxic aquifers. Environ. Pollut. 157, 1800–1806 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Wanner, P., Parker, B. L., Chapman, S. W., Aravena, R. & Hunkeler, D. Quantification of degradation of chlorinated hydrocarbons in saturated low permeability sediments using compound-specific isotope analysis. Environ. Sci. Technol. 50, 5622–5630 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Illy, V. D. et al. Chlorinated solvents source identification by nonlinear optimization method. Environ. Monit. Assess. 195, 531 (2023).

    Article  CAS  PubMed  Google Scholar 

  64. Blessing, M., Schmidt, T. C., Dinkel, R. & Haderlein, S. B. Delineation of multiple chlorinated ethene sources in an industrialized area - a forensic field study using compound-specific isotope analysis. Environ. Sci. Technol. 43, 2701–2707 (2009).

    Article  CAS  PubMed  Google Scholar 

  65. Griebler, C., Safinowski, M., Vieth, A., Richnow, H. H. & Meckenstock, R. U. Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ. Sci. Technol. 38, 617–631 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Sra, K. S. et al. Sulfate land application enhances biodegradation in a petroleum hydrocarbon smear zone. Groundw. Monit. Remed. 43, 44–59 (2023).

    Article  CAS  Google Scholar 

  67. Steinbach, A., Seifert, R., Annweiler, E. & Michaelis, W. Hydrogen and carbon isotope fractionation during anaerobic biodegradation of aromatic hydrocarbons–a field study. Environ. Sci. Technol. 38, 609–616 (2004).

    Article  CAS  PubMed  Google Scholar 

  68. Trust Hammer, B., Kelley, C. A., Coffin, R. B., Cifuentes, L. A. & Mueller, J. G. δ13C values of polycyclic aromatic hydrocarbons collected from two creosote-contaminated sites. Chem. Geol. 152, 43–58 (1998).

    Article  CAS  Google Scholar 

  69. Zwank, L. et al. New evaluation scheme for two-dimensional isotope analysis to decipher biodegradation processes: application to groundwater contamination by MTBE. Environ. Sci. Technol. 39, 1018–1029 (2005).

    Article  CAS  PubMed  Google Scholar 

  70. Bombach, P., Nägele, N., Rosell, M., Richnow, H. H. & Fischer, A. Evaluation of ethyl tert-butyl ether biodegradation in a contaminated aquifer by compound-specific isotope analysis and in situ microcosms. J. Hazard. Mater. 286, 100–106 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Fayolle-Guichard, F. et al. Study of an aquifer contaminated by ethyl tert-butyl ether (ETBE): site characterization and on-site bioremediation. J. Hazard. Mater. 201–202, 236–243 (2012).

    Article  PubMed  Google Scholar 

  72. Kuder, T. et al. Enrichment of stable carbon and hydrogen isotopes during anaerobic biodegradation of MTBE: microcosm and field evidence. Environ. Sci. Technol. 39, 213–220 (2005).

    Article  CAS  PubMed  Google Scholar 

  73. McKelvie, J. R., Mackay, D. M., de Sieyes, N. R., Lacrampe-Couloume, G. & Sherwood Lollar, B. Quantifying MTBE biodegradation in the Vandenberg Air Force Base ethanol release study using stable carbon isotopes. J. Contam. Hydrol. 94, 157–165 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Shayan, M. et al. Integrated plume treatment using persulfate coupled with microbial sulfate reduction. Groundw. Monit. Remed. 38, 45–61 (2018).

    Article  CAS  Google Scholar 

  75. Wijker, R. S., Bolotin, J., Nishino, S. F., Spain, J. C. & Hofstetter, T. B. Using compound-specific isotope analysis to assess biodegradation of nitroaromatic explosives in the subsurface. Environ. Sci. Technol. 47, 6872–6883 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Tong, Y. et al. Exploring the utility of compound-specific isotope analysis for assessing ferrous iron-mediated reduction of RDX in the subsurface. Environ. Sci. Technol. 55, 6752–6763 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Bernstein, A. et al. Quantifying RDX biodegradation in groundwater using δ15N isotope analysis. J. Contam. Hydrol. 111, 25–35 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Fuller, M. E. et al. Application of a multiple lines of evidence approach to document natural attenuation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater. Chemosphere 250, 126210 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Bashir, S., Hitzfeld, K. L., Gehre, M., Richnow, H. H. & Fischer, A. Evaluating degradation of hexachlorcyclohexane (HCH) isomers within a contaminated aquifer using compound-specific stable carbon isotope analysis (CSIA). Water Res. 71, 187–196 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Chartrand, M. et al. Compound specific isotope analysis of hexachlorocyclohexane isomers: a method for source fingerprinting and field investigation of in situ biodegradation. Rapid Commun. Mass Spectrom. 29, 505–514 (2015).

    Article  CAS  PubMed  Google Scholar 

  81. Wu, L. et al. Isotope fractionation approach to characterize the reactive transport processes governing the fate of hexachlorocyclohexanes at a contaminated site in India. Environ. Int. 132, 105036 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Wu, L. et al. Carbon and hydrogen isotope analysis of parathion for characterizing its natural attenuation by hydrolysis at a contaminated site. Water Res. 143, 146–154 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Hunkeler, D., Meckenstock, R., Sherwood Lollar, B., Schmidt, T. C. & Wilson, J. C. A Guide for Assessing Biodegradation and Source Identification of Organic Ground Water Contaminants using Compound Specific Isotope Analysis (CSIA) Report No. EPA 600/R-08/148 (US EPA, 2008).

  84. Lihl, C. et al. Mechanistic dichotomy in bacterial trichloroethene dechlorination revealed by carbon and chlorine isotope effects. Environ. Sci. Technol. 53, 4245–4254 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Heckel, B. & Elsner, M. Exploring mechanisms of biotic chlorinated alkane reduction: evidence of nucleophilic substitution (SN2) with vitamin B12. Environ. Sci. Technol. 56, 6325–6336 (2022).

    Article  CAS  PubMed  Google Scholar 

  86. Kuder, T. & Ojeda, A. S. Hydrogen isotope exchange between trichloroethene and water under mild environmental conditions- implications for the use of hydrogen CSIA in contaminated site assessment. ACS EST Water 3, 712–719 (2023).

    Article  CAS  Google Scholar 

  87. Wanner, P., Parker, B. L., Chapman, S. W., Aravena, R. & Hunkeler, D. Does sorption influence isotope ratios of chlorinated hydrocarbons under field conditions? Appl. Geochem. 84, 348–359 (2017).

    Article  CAS  Google Scholar 

  88. Murray, A. M. et al. A modeling approach integrating microbial activity, mass transfer, and geochemical processes to interpret biological assays: an example for PCE degradation in a multi-phase batch setup. Water Res. 160, 484–496 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Ottosen, C. B. et al. Assessment of chlorinated ethenes degradation after field scale injection of activated carbon and bioamendments: application of isotopic and microbial analyses. J. Contam. Hydrol. 240, 103794 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Wienkenjohann, H., Jin, B. & Rolle, M. Diffusive-dispersive isotope fractionation of chlorinated ethenes in groundwater: the key role of incomplete mixing and its multi-scale effects. Water Resour. Res. 59, e2022WR034041 (2023).

    Article  CAS  Google Scholar 

  91. Torrento, C. et al. Triple-element compound-specific stable isotope analysis (3D-CSIA): added value of Cl isotope ratios to assess herbicide degradation. Environ. Sci. Technol. 55, 13891–13901 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Lihl, C. et al. Compound-specific chlorine isotope fractionation in biodegradation of atrazine. Environ. Sci. 22, 792–801 (2020).

    CAS  Google Scholar 

  93. Qiu, S. et al. 13C/12C fractionation contrasts with large enantiomer fractionation in aerobic biodegradation of phenoxy acids. Environ. Sci. Technol. 48, 5501–5511 (2014).

    Article  CAS  PubMed  Google Scholar 

  94. Masbou, J., Meite, F., Guyot, B. & Imfeld, G. Enantiomer-specific stable carbon isotope analysis (ESIA) to evaluate degradation of the chiral fungicide metalaxyl in soils. J. Hazard. Mater. 353, 99–107 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Masbou, J., Payraudeau, S., Guyot, B. & Imfeld, G. Dimethomorph degradation in vineyards examined by isomeric and isotopic fractionation. Chemosphere 313, 137341 (2023).

    Article  CAS  PubMed  Google Scholar 

  96. Gilevska, T. et al. Simple extraction methods for pesticide compound-specific isotope analysis from environmental samples. MethodsX 9, 101880 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Min, N. et al. Accelerated solvent extraction combined with GC-MS: a convenient technique for the determination and compound-specific stable isotope analysis of phthalates in mine tailings. Microchem. J. 153, 104366 (2020).

    Article  CAS  Google Scholar 

  98. Torrentó, C. et al. Solid-phase extraction method for stable isotope analysis of pesticides from large volume environmental water samples. Analyst 144, 2898–2908 (2019).

    Article  PubMed  Google Scholar 

  99. Melsbach, A. et al. Isotope fractionation of micropollutants during large-volume extraction: heads-up from a critical method evaluation for atrazine, desethylatrazine and 2,6-dichlorobenzamide at low ng/L concentrations in groundwater. Isot. Environ. Health Stud. 57, 35–52 (2021).

    Article  CAS  Google Scholar 

  100. Schulze, T. et al. Assessment of a novel device for onsite integrative large-volume solid phase extraction of water samples to enable a comprehensive chemical and effect-based analysis. Sci. Total Environ. 581-582, 350–358 (2017).

    Article  CAS  PubMed  Google Scholar 

  101. Gilevska, T. et al. Do pesticides degrade in surface water receiving runoff from agricultural catchments? Combining passive samplers (POCIS) and compound-specific isotope analysis. Sci. Total Environ. 842, 156735 (2022).

    Article  CAS  PubMed  Google Scholar 

  102. Lorenzo-Parodi, N., Kaziur, W., Stojanović, N., Jochmann, M. A. & Schmidt, T. C. Solventless microextraction techniques for water analysis. Trends Anal. Chem. 113, 321–331 (2019).

    Article  CAS  Google Scholar 

  103. Yamini, Y., Rezazadeh, M. & Seidi, S. Liquid-phase microextraction – the different principles and configurations. Trends Anal. Chem. 112, 264–272 (2019).

    Article  CAS  Google Scholar 

  104. Bakkour, R., Bolotin, J., Sellergren, B. & Hofstetter, T. B. Molecularly-imprinted polymers for compound-specific isotope analysis of polar organic micropollutants in aquatic environments. Anal. Chem. 90, 7292–7301 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Glöckler, D., Wabnitz, C., Elsner, M. & Bakkour, R. Avoiding interferences in advance: cyclodextrin polymers to enhance selectivity in extraction of organic micropollutants for carbon isotope analysis. Anal. Chem. 95, 7839–7848 (2023).

    Article  PubMed  Google Scholar 

  106. Renpenning, J., Kümmel, S., Hitzfeld, K. L., Schimmelmann, A. & Gehre, M. Compound-specific hydrogen isotope analysis of heteroatom-bearing compounds via gas chromatography-chromium-based high-temperature conversion (Cr/HTC)-isotope ratio mass spectrometry. Anal. Chem. 87, 9443–9450 (2015).

    Article  CAS  PubMed  Google Scholar 

  107. Schürner, H. K. V. et al. Compound-specific stable isotope fractionation of pesticides and pharmaceuticals in a mesoscale aquifer model. Environ. Sci. Technol. 50, 5729–5739 (2016).

    Article  PubMed  Google Scholar 

  108. Spahr, S. et al. Compound-specific isotope analysis of benzotrizale and its derivatives. Anal. Bioanal. Chem. 405, 2843–2856 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Reinnicke, S., Bernstein, A. & Elsner, M. Small and reproducible isotope effects during methylation with trimethylsulfonium hydroxide (TMSH): a convenient derivatization method for isotope analysis of negatively charged molecules. Anal. Chem. 82, 2013–2019 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Maier, M. P. et al. C & N isotope analysis of diclofenac to distinguish oxidative and reductive transformation and to track commercial products. Environ. Sci. Technol. 48, 2312–2320 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Melsbach, A. et al. 13C- and 15N-isotope analysis of desphenylchloridazon by liquid chromatography-isotope-ratio mass spectrometry and derivatization gas chromatography-isotope-ratio mass spectrometry. Anal. Chem. 91, 3412–3420 (2019).

    Article  CAS  PubMed  Google Scholar 

  112. Mogusu, E. O., Wolbert, J. B., Kujawinski, D. M., Jochmann, M. A. & Elsner, M. Dual element (15N/14N, 13C/12C) isotope analysis of glyphosate and AMPA by derivatization-gas chromatography isotope ratio mass spectrometry (GC/IRMS) combined with LC/IRMS. Anal. Bioanal. Chem. 407, 5249–5260 (2015).

    Article  CAS  PubMed  Google Scholar 

  113. Kujawinski, D. M., Zhang, L., Schmidt, T. C. & Jochmann, M. A. When other separation techniques fail: compound-specific carbon isotope ratio analysis of sulfonamide containing pharmaceuticals by high-temperature-liquid chromatography-isotope ratio mass spectrometry. Anal. Chem. 84, 7656–7663 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Kujawinski, D. M. et al. Carbon isotope ratio measurements of glyphosate and AMPA by liquid chromatography coupled to isotope ratio mass spectrometry. Anal. Bioanal. Chem. 405, 2869–2878 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Martin, P. R., Buchner, D., Jochmann, M. A. & Haderlein, S. B. Stable carbon isotope analysis of polyphosphonate complexing agents by anion chromatography coupled to isotope ratio mass spectrometry: method development and application. Anal. Bioanal. Chem. 412, 4827–4835 (2020).

    Article  CAS  PubMed  Google Scholar 

  116. Zeichner, S. S. et al. Methods and limitations of stable isotope measurements via direct elution of chromatographic peaks using gas chromotography-orbitrap mass spectrometry. Int. J. Mass Spectrom. 477, 116848 (2022).

    Article  CAS  Google Scholar 

  117. Mueller, E. P., Sessions, A. L., Sauer, P. E., Weiss, G. M. & Eiler, J. M. Simultaneous, high-precision measurements of δ2H and δ13C in nanomole quantities of acetate using electrospray ionization-quadrupole-orbitrap mass spectrometry. Anal. Chem. 94, 1092–1100 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Fenner, K., Canonica, S., Wackett, L. P. & Elsner, M. Evaluating pesticide degradation in the environment: blind spots and emerging opportunities. Science 341, 752–758 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Leu, C., Singer, H., Stamm, C., Müller, S. & Schwarzenbach, R. Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application. Environ. Sci. Technol. 38, 3835–3841 (2004).

    Article  CAS  PubMed  Google Scholar 

  120. Leu, C., Singer, H., Stamm, C., Müller, S. & Schwarzenbach, R. Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment. Environ. Sci. Technol. 38, 3827–3834 (2004).

    Article  CAS  PubMed  Google Scholar 

  121. Melsbach, A. et al. Dual-element isotope analysis of desphenylchloridazon to investigate its environmental fate in a systematic field study: a long-term lysimeter experiment. Environ. Sci. Technol. 54, 3929–3939 (2020).

    Article  CAS  PubMed  Google Scholar 

  122. Alvarez-Zaldívar, P., Payraudeau, S., Meite, F., Masbou, J. & Imfeld, G. Pesticide degradation and export losses at the catchment scale: insights from compound-specific isotope analysis (CSIA). Water Res. 139, 198–207 (2018).

    Article  PubMed  Google Scholar 

  123. Marron, E. L., Mitch, W. A., von Gunten, U. & Sedlak, D. L. A tale of two treatments: the multiple barrier approach to removing chemical contaminants during potable water reuse. Acc. Chem. Res. 52, 615–622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018).

    Article  Google Scholar 

  125. Sedlak, D. L. & von Gunten, U. The chlorine dilemma. Science 331, 42–43 (2011).

    Article  CAS  PubMed  Google Scholar 

  126. Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Petrie, B., Barden, R. & Kasprzyk-Hordern, B. A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring. Water Res. 72, 3–27 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Yang, Y. et al. Which micropollutants in water environments deserve more attention globally? Environ. Sci. Technol. 56, 13–29 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Terhalle, J. et al. Linking reaction rate constants and isotope fractionation of ozonation reactions using phenols as probes. Water Res. 210, 117931 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Willach, S. et al. Degradation of sulfamethoxazole using ozone and chlorine dioxide – compound-specific stable isotope analysis, transformation product analysis and mechanistic aspects. Water Res. 122, 280–289 (2017).

    Article  CAS  PubMed  Google Scholar 

  131. Willach, S. et al. Carbon isotope fractionation of substituted benzene analogs during oxidation with ozone and hydroxyl radicals: how should experimental data be interpreted? Environ. Sci. Technol. 54, 6713–6722 (2020).

    Article  CAS  PubMed  Google Scholar 

  132. Maier, M. P. et al. Exploring trends of C and N isotope fractionation to trace transformation reactions of diclofenac in natural and engineered systems. Environ. Sci. Technol. 50, 10933–10942 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Arnold, W. A., Bolotin, J., Gunten, U. V. & Hofstetter, T. B. Evaluation of functional groups responsible for chloroform formation during water chlorination using compound specific isotope analysis. Environ. Sci. Technol. 42, 7778–7785 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Spahr, S., Cirpka, O. A., von Gunten, U. & Hofstetter, T. B. Formation of N-nitrosodimethylamine during chloramination of secondary and tertiary amines: role of molecular oxygen and radical intermediates. Environ. Sci. Technol. 51, 280–290 (2017).

    Article  CAS  PubMed  Google Scholar 

  135. Spahr, S., von Gunten, U. & Hofstetter, T. B. Carbon, hydrogen, and nitrogen isotope fractionation trends in N-nitrosodimethylamine reflect the formation pathway during chloramination of tertiary amines. Environ. Sci. Technol. 51, 13170–13179 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Houska, J., Stocco, L., Hofstetter, T. B. & von Gunten, U. Hydrogen peroxide formation during ozonation of olefins and phenol: mechanistic insights from oxygen isotope signatures. Environ. Sci. Technol. https://doi.org/10.1021/acs.est.3c00788 (2023).

  137. Prasse, C., von Gunten, U. & Sedlak, D. L. Chlorination of phenols revisited: unexpected formation of α,β-unsaturated C4-dicarbonyl ring cleavage products. Environ. Sci. Technol. 54, 826–834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Prasse, C., Ford, B., Nomura, D. K. & Sedlak, D. L. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc. Natl Acad. Sci. USA 115, 2311–2316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schmidt, C. K. & Brauch, H.-J. N,N-Dimethylsulfamide as precursor for N-nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 42, 6340–6346 (2008).

    Article  CAS  PubMed  Google Scholar 

  140. von Gunten, U., Salhi, E., Schmidt, C. K. & Arnold, W. A. Kinetics and mechanisms of N-nitrosodimethylamine formation upon ozonation of N,N-dimethylsulfamide-containing waters: bromide catalysis. Environ. Sci. Technol. 44, 5762–5768 (2010).

    Article  Google Scholar 

  141. Tentscher, P. R., Bourgin, M. & von Gunten, U. Ozonation of para-substituted phenolic compounds yields p-benzoquinones, other cyclic α-,β-unsaturated ketones, and substituted catechols. Environ. Sci. Technol. 52, 4763–4773 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Lim, S., Shi, J. L., von Gunten, U. & McCurry, D. L. Ozonation of organic compounds in water and wastewater: a critical review. Water Res. 213, 118053 (2022).

    Article  CAS  PubMed  Google Scholar 

  143. Pham, H. T., Wahman, D. G. & Fairey, J. L. Updated reaction rathway for dichloramine decomposition: formation of reactive nitrogen species and N-nitrosodimethylamine. Environ. Sci. Technol. 55, 1740–1749 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Spahr, S. et al. Compound-specific carbon, nitrogen, and hydrogen isotope analysis of N-nitrosodimethylamine in aqueous solutions. Anal. Chem. 87, 2916–2924 (2015).

    Article  CAS  PubMed  Google Scholar 

  145. Hartenbach, A. E. et al. Carbon, hydrogen, and nitrogen isotope fractionation during light-induced transformations of atrazine. Environ. Sci. Technol. 42, 7751–7756 (2008).

    Article  CAS  PubMed  Google Scholar 

  146. Ratti, M. et al. Isotope fractionation associated with the direct photolysis of 4-chloroaniline. Environ. Sci. Technol. 49, 4263–4273 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Ratti, M., Canonica, S., McNeill, K., Bolotin, J. & Hofstetter, T. B. Isotope fractionation associated with the photochemical dechlorination of chloroanilines. Environ. Sci. Technol. 49, 9797–9806 (2015).

    Article  CAS  PubMed  Google Scholar 

  148. Ratti, M., Canonica, S., McNeill, K., Bolotin, J. & Hofstetter, T. B. Isotope fractionation associated with the indirect photolysis of substituted anilines in aqueous solution. Environ. Sci. Technol. 49, 12766–12773 (2015).

    Article  CAS  PubMed  Google Scholar 

  149. Skarpeli-Liati, M., Pati, S. G., Bolotin, J., Eustis, S. N. & Hofstetter, T. B. Carbon, hydrogen, and nitrogen isotope analysis associated with oxidative transformation of substituted N-alkylated aromatic amines. Environ. Sci. Technol. 46, 7189–7198 (2012).

    Article  CAS  PubMed  Google Scholar 

  150. Skarpeli-Liati, M. et al. Using nitrogen isotope fractionation to assess the oxidation of substituted anilines by manganese oxide. Environ. Sci. Technol. 45, 5596–5604 (2011).

    Article  CAS  PubMed  Google Scholar 

  151. Pati, S. G. et al. Carbon and nitrogen isotope effects associated with the dioxygenation of aniline and diphenylamine. Environ. Sci. Technol. 46, 11844–11853 (2012).

    Article  CAS  PubMed  Google Scholar 

  152. Gharasoo, M., Elsner, M., Van Cappellen, P. & Thullner, M. Pore-scale heterogeneities improve the degradation of a self-inhibiting substrate: insights from reactive transport modeling. Environ. Sci. Technol. 56, 13008–13018 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. Sun, F. et al. Mass-transfer-limited biodegradation at low concentrations—evidence from reactive transport modeling of isotope profiles in a bench-scale aquifer. Environ. Sci. Technol. 55, 7386–7397 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Druhan, J. L., Winnick, M. J. & Thullner, M. Stable isotope fractionation by transport and transformation. Rev. Mineral. Geochem. 85, 239–264 (2019).

    Article  CAS  Google Scholar 

  155. Lutz, S. R. et al. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data. Hydrol. Earth Syst. Sci. 21, 5243–5261 (2017).

    Article  CAS  Google Scholar 

  156. Ye, Y., Chiogna, G., Cirpka, O., Grathwohl, P. & Rolle, M. Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems. J. Contam. Hydrol. 172, 33–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  157. Bernstein, A. et al. Compound-specific chlorine isotope analysis: a comparison of gas chromatography/isotope ratio mass spectrometry and gas chromatography/quadrupole mass spectrometry methods in an interlaboratory study. Anal. Chem. 83, 7624–7634 (2011).

    Article  CAS  PubMed  Google Scholar 

  158. Schimmelmann, A. et al. Nicotine, acetanilide and urea multi-level 2H-, 13C-, and 15N-abundance reference materials for continuous-flow isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 23, 3513–3521 (2009).

    Article  CAS  PubMed  Google Scholar 

  159. Schimmelmann, A. et al. Organic reference materials for hydrogen, carbon, and nitrogen stable isotope-ratio measurements: caffeines, n-alkanes, fatty acid methyl esters, glycines, l-valines, polyethylenes, and oils. Anal. Chem. 88, 4294–4302 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Vogt, C., Kleinsteuber, S. & Richnow, H.-H. Anaerobic benzene degradation by bacteria. Microb. Biotechnol. 4, 710–724 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Meija, J. et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 88, 293–306 (2016).

    Article  CAS  Google Scholar 

  162. Sakaguchi-Söder, K., Jager, J., Grund, H., Matthäus, F. & Schüth, C. Monitoring and evaluation of dechlorination processes using compound-specific chlorine isotope analysis. Rapid Commun. Mass Spectrom. 21, 3077–3084 (2007).

    Article  PubMed  Google Scholar 

  163. Aeppli, C., Holmstrand, H., Andersson, P. & Gustafsson, Ö. Direct compound-specific stable chlorine isotope analysis of organic compounds with quadrupole GC/MS using standard isotope bracketing. Anal. Chem. 82, 420–426 (2010).

    Article  CAS  PubMed  Google Scholar 

  164. Kuzmin, A., Grigoryeva, T. & Gorshkkov, A. Assessment of stable carbon isotope 13C/12C ratio in phthalates from surface waters using HPLC-HRMS-TOF approach. Environ. Sci. Pollut. Res. 30, 87734–87742 (2023).

    Article  CAS  Google Scholar 

  165. Eiler, J. et al. Analysis of molecular isotopic structures at high precision and accuracy by Orbitrap mass spectrometry. Int. J. Mass Spectrometry 422, 126–142 (2017).

    Article  CAS  Google Scholar 

  166. Blessing, M. & Baran, N. A review on environmental isotope analysis of aquatic micropollutants: recent advances, pitfalls and perspectives. Trends Anal. Chem. 157, 116730 (2022).

    Article  CAS  Google Scholar 

  167. Sessions, A. L. Isotope-ratio detection for gas chromatography. J. Sep. Sci. 29, 1946–1961 (2006).

    Article  CAS  PubMed  Google Scholar 

  168. Reinnicke, S. et al. Gas chromatography/isotope ratio mass spectrometry of recalcitrant target compounds: performance of different combustion reactors and strategies for standardization: GC/IRMS of recalcitrant target compounds. Rapid Commun. Mass Spectrom. 26, 1053–1060 (2012).

    Article  CAS  PubMed  Google Scholar 

  169. Renpenning, J., Horst, A., Schmidt, M. & Gehre, M. Online isotope analysis of 37Cl/35Cl universally applied for semi-volatile organic compounds using GC/MC-ICP-MS. J. Anal. At. Spectrom. 33, 314–321 (2018).

    Article  CAS  Google Scholar 

  170. Merritt, D. A., Freeman, K. H., Ricci, M. P., Studley, S. A. & Hayes, J. M. Performance and optimization of a combustion interface for isotope ratio monitoring gas chromatography/mass spectrometry. Anal. Chem. 67, 2461–2473 (1995).

    Article  CAS  PubMed  Google Scholar 

  171. Merritt, D. A. & Hayes, J. M. Nitrogen isotopic analyses by isotope-ratio-monitoring gas chromatography / mass spectrometry. J. Am. Soc. Mass Spectrom. 5, 387–397 (1994).

    Article  CAS  PubMed  Google Scholar 

  172. Brand, W., Tegtmeyer, A. & Hilkert, A. Compound-specific isotope analysis: extending toward 15N/14N and 18O/16O. Org. Geochem. 21, 585–594 (1994).

    Article  CAS  Google Scholar 

  173. Macko, S., Uhle, M., Engel, M. & Andrusevich, V. Stable nitrogen isotope analysis of amino acid enantiomers by gas chromatography combustion/isotope ratio mass spectrometry. Anal. Chem. 69, 926–929 (1997).

    Article  CAS  PubMed  Google Scholar 

  174. Hilkert, A. W., Douthitt, C. B., Schlüter, H. J. & Brand, W. A. Isotope ratio monitoring gas chromatography/mass spectrometry of D/H by high temperature conversion isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 13, 1226–1230 (1999).

    Article  CAS  PubMed  Google Scholar 

  175. Burgoyne, T. W. & Hayes, J. M. Quantitative production of H2 by pyrolysis of gas chromatographic effluents. Anal. Chem. 70, 5136–5141 (1998).

    Article  CAS  Google Scholar 

  176. Renpenning, J., Schimmelmann, A. & Gehre, M. Compound-specific hydrogen isotope analysis of fluorine-, chlorine-, bromine- and iodine-bearing organics using gas chromatography-chromium-based high-temperature conversion (Cr/HTC) isotope ratio mass spectrometry: compound-specific hydrogen isotope analysis of halogen-bearing organics. Rapid Commun. Mass Spectrom. 31, 1095–1102 (2017).

    Article  CAS  PubMed  Google Scholar 

  177. Krummen, M. et al. A new concept for isotope ratio monitoring liquid chromatography/mass spectrometry: New concept for isotope ratio monitoring LC/MS. Rapid Commun. Mass Spectrom. 18, 2260–2266 (2004).

    Article  CAS  PubMed  Google Scholar 

  178. Zakon, Y., Halicz, L. & Gelman, F. δ13C compound-specific isotope analysis in organic compounds by GC/MC-ICP-MS. J. Anal. At. Spectrom. 36, 1884–1888 (2021).

    Article  CAS  Google Scholar 

  179. Horst, A., Renpenning, J., Richnow, H.-H. & Gehre, M. Compound specific stable chlorine isotopic analysis of volatile aliphatic compounds using gas chromatography hyphenated with multiple collector inductively coupled plasma mass spectrometry. Anal. Chem. 89, 9131–9138 (2017).

    Article  CAS  PubMed  Google Scholar 

  180. Horst, A. et al. Compound-specific bromine isotope analysis of methyl bromide using gas chromatography hyphenated with inductively coupled plasma multiple-collector mass spectrometry. Rapid Commun. Mass Spectrom. 25, 2425–2432 (2011).

    Article  CAS  PubMed  Google Scholar 

  181. Kümmel, S. et al. Simultaneous compound-specific analysis of δ33S and δ34S in organic compounds by GC/MC-ICP-MS using medium- and low-mass-resolution modes. Anal. Chem. 92, 14685–14692 (2020).

    Article  PubMed  Google Scholar 

  182. Amrani, A., Sessions, A. L. & Adkins, J. F. Compound-specific δ34S analysis of volatile organics by coupled GC/multicollector-ICP-MS. Anal. Chem. 81, 9027–9034 (2009).

    Article  CAS  PubMed  Google Scholar 

  183. Freije-Carrelo, L., García-Bellido, J., Calderón-Celis, F., Moldovan, M. & Encinar, J. R. GC-ICP-MS/MS instrumental setup for total and speciation sulfur analysis in gasolines using generic standards. Anal. Chem. 91, 7019–7024 (2019).

    Article  CAS  PubMed  Google Scholar 

  184. Nijenhuis, I., Renpenning, J., Kümmel, S., Richnow, H. H. & Gehre, M. Recent advances in multi-element compound-specific stable isotope analysis of organohalides: achievements, challenges and prospects for assessing environmental sources and transformation. Trends Environ. Anal. Chem. 11, 1–8 (2016).

    Article  CAS  Google Scholar 

  185. Werner, R. A. & Brand, W. A. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun. Mass Spectrom. 15, 501–519 (2001).

    Article  CAS  PubMed  Google Scholar 

  186. Paul, D., Skrzypek, G. & Fòrizs, I. Normalization of measured stable isotopic compositions to isotope reference scales - a review. Rapid Commun. Mass Spectrom. 21, 3006–3014 (2010).

    Article  Google Scholar 

  187. Brand, W. A., Coplen, T. B., Vogl, J., Rosner, M. & Prohaska, T. Assessment of international reference materials for isotope-ratio analysis (IUPAC Technical Report). Pure Appl. Chem. 86, 425–467 (2014).

    Article  CAS  Google Scholar 

  188. Lihl, C. et al. Toward improved accuracy in chlorine isotope analysis: synthesis routes for in-house standards and characterization via complementary mass spectrometry methods. Anal. Chem. 91, 12290–12297 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Elsner, M., Chartrand, M., VanStone, N., Lacrampe Couloume, G. & Sherwood Lollar, B. Identifying abiotic chlorinated ethene degradation: characteristic isotope patterns in reaction products with nanoscale zero-valent iron. Environ. Sci. Technol. 42, 5963–5970 (2008).

    Article  CAS  PubMed  Google Scholar 

  190. Rayleigh, L. Theoretical considerations respecting the separation of gases by diffusion and similar processes. Lond. Edinb. Dublin Philos. Mag. J. Sci. 42, 493–498 (1896).

    Article  Google Scholar 

  191. Elsner, M., Zwank, L., Hunkeler, D. & Schwarzenbach, R. P. A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants. Environ. Sci. Technol. 39, 6896–6916 (2005).

    Article  CAS  PubMed  Google Scholar 

  192. Hofstetter, T. B. et al. Isotope effects as new proxies for organic pollutant transformation. Chimia 68, 788–792 (2014).

    Article  CAS  PubMed  Google Scholar 

  193. Elsner, M. & Imfeld, G. Compound-specific isotope analysis (CSIA) of micropollutants in the environment — current developments and future challenges. Curr. Opin. Biotechnol. 41, 60–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  194. Thullner, M., Fischer, A., Richnow, H.-H. & Wick, L. Y. Influence of mass transfer on stable isotope fractionation. Appl. Microbiol. Biotechnol. 97, 441–452 (2013).

    Article  CAS  PubMed  Google Scholar 

  195. Wijker, R. S., Pati, S. G., Zeyer, J. & Hofstetter, T. B. Enzyme kinetics of different types of flavin-dependent monooxygenases determine the observable contaminant stable isotope fractionation. Environ. Sci. Technol. Lett. 2, 329–334 (2015).

    Article  CAS  Google Scholar 

  196. Ehrl, B. N., Kundu, K., Gharasoo, M., Marozava, S. & Elsner, M. Rate-limiting mass transfer in micropollutant degradation revealed by isotope fractionation in chemostat. Environ. Sci. Technol. 53, 1197–1205 (2019).

    Article  CAS  PubMed  Google Scholar 

  197. Pati, S. G., Bopp, C. E., Kohler, H.-P. E. & Hofstetter, T. B. Substrate-specific coupling of O2 activation to hydroxylations of aromatic compounds by Rieske non-heme iron dioxygenases. ACS Catal. 12, 6444–6456 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Bopp, C. E., Bernet, N. M., Kohler, H.-P. E. & Hofstetter, T. B. Elucidating the role of O2 uncoupling in the oxidative biodegradation of organic contaminants by rieske non-heme iron dioxygenases. ACS Environ. Au 2, 428–440 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the scientific ideas and concepts presented in this Review as part a collaborative workshop series held between October 2022 and January 2023 by the Water Chemistry Division/Expert group on Stable Isotope Sciences of the German Chemical Society (GDCh). T.B.H., M.E., H.E., D.H., G.I. and T.C.S. wrote the introduction and designed the concept for Fig. 1. M.E., M.G., M.A.J., S.K., C.V. and S.G.P. summarized the principles of isotope fractionation and instrumental analysis. A.F. and D.H. wrote the section on contaminant hydrology with comments from M.E. and T.B.H. G.I., R.B., P.H., S.B.H. and P.R.M. composed the section on pesticide use and pollution control. T.B.H., D.B., M.A.J. and S.G.P. elaborated on applications in water treatment systems. M.E., D.H., T.B.H., G.I. and P.R.M. wrote the conclusion. T.B.H. and M.E. coordinated the workshop series and the writing process and prepared the consolidated versions of the manuscript.

Corresponding authors

Correspondence to Thomas B. Hofstetter or Martin Elsner.

Ethics declarations

Competing interests

H.E. and A.F. are executive directors of Isodetect, which offers commercial CSIA for environmental samples. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Tomasz Kuder and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofstetter, T.B., Bakkour, R., Buchner, D. et al. Perspectives of compound-specific isotope analysis of organic contaminants for assessing environmental fate and managing chemical pollution. Nat Water 2, 14–30 (2024). https://doi.org/10.1038/s44221-023-00176-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00176-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing