Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transforming membrane distillation to a membraneless fabric distillation for desalination

Abstract

Membrane distillation (MD), an emerging thermal desalination technology for more than five decades, has not been widely commercialized largely due to the use of hydrophobic membranes. Here we introduce fabric distillation (FD), a novel membraneless thermal desalination technology, as a transformative alternative to MD. FD shares similar working principles with MD but distinguishes itself by employing hydrophilic fabrics instead of hydrophobic membranes for vapour–water separation. We outline the requirements of a desirable fabric for FD and show that common hydrophilic cotton and linen are applicable. Subsequently, we propose feasible FD configurations with experimental demonstrations. Through rigorous module-scale analysis, we reveal that FD outperforms MD in thermal desalination performance. Additionally, we elucidate the interaction of the membrane or fabric with ubiquitous substances in saline brines and experimentally demonstrate the promise of FD for practical applications. We conclude by highlighting the advantages of FD over MD, casting doubts on the rationale of MD for desalination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Feed evaporation schematic.
Fig. 2: Working principles of FD.
Fig. 3: FD as a viable desalination technology.
Fig. 4: Comparison of desalination performance of MD and FD.
Fig. 5: Impact of practical challenges on MD and FD operation.
Fig. 6: Radar chart depicting a comprehensive comparison of MD and FD.

Similar content being viewed by others

Data availability

Source data are provided with the paper. Source data for figures are in Excel format (.xlsx) and also available publicly via https://doi.org/10.6084/m9.figshare.24511759.

Code availability

The codes for modelling MD and FD in different configurations are available publicly via https://github.com/selinacyml/NATWATER-23-0679.

References

  1. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, 2 (2016).

    Article  Google Scholar 

  2. Greve, P. et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 1, 486–494 (2018).

    Article  Google Scholar 

  3. Grant, S. B. et al. Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability. Science 337, 681–686 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. Chen, X. & Yip, N. Y. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environ. Sci. Technol. 52, 2242–2250 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Shaffer, D. L. et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol. 47, 9569–9583 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Deshmukh, A. et al. Membrane distillation at the water–energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).

    Article  CAS  Google Scholar 

  8. Kang-Jia Lu, T.-S. C. Membrane Distillation: Membranes, Hybrid Systems, and Pilot Studies, 1st edn (CRC Press, 2019).

  9. Wang, Z. et al. Pathways and challenges for efficient solar-thermal desalination. Sci. Adv. 5, eaax0763 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, S. Energy efficiency of desalination: fundamental insights from intuitive interpretation. Environ. Sci. Technol. 54, 76–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Gingerich, D. B. & Mauter, M. S. Quantity, quality, and availability of waste heat from United States thermal power generation. Environ. Sci. Technol. 49, 8297–8306 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, W. et al. Integrated solar-driven PV cooling and seawater desalination with zero liquid discharge. Joule 5, 1873–1887 (2021).

    Article  Google Scholar 

  14. Lawson, K. W. & Lloyd, D. R. Membrane distillation. J. Membr. Sci. 124, 1–25 (1997).

    Article  CAS  Google Scholar 

  15. Wang, P. & Chung, T.-S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J. Membr. Sci. 474, 39–56 (2015).

    Article  CAS  Google Scholar 

  16. Shabani, Z., Mohammadi, T., Kasiri, N. & Sahebi, S. Development of high-performance thin-film composite FO membrane by tailoring co-deposition of dopamine and m-phenylenediamine for the Caspian seawater desalination. Desalination 527, 115577 (2022).

    Article  CAS  Google Scholar 

  17. Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).

    Article  CAS  Google Scholar 

  18. Horseman, T. et al. Wetting, scaling, and fouling in membrane distillation: state-of-the-art insights on fundamental mechanisms and mitigation strategies. ACS ES&T Eng. 1, 117–140 (2021).

    Article  CAS  Google Scholar 

  19. Wang, W. et al. Trade-off in membrane distillation with monolithic omniphobic membranes. Nat. Commun. 10, 3220 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li, M., Cao, Y. & Zhang, X. Hierarchically structured nanoparticle-free omniphobic membrane for high-performance membrane distillation. Environ. Sci. Technol. 57, 5841–5851 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Gong, W. et al. Wicking-polarization-induced water cluster size effect on triboelectric evaporation textiles. Adv. Mater. 33, e2007352 (2021).

    Article  PubMed  Google Scholar 

  22. Miao, D., Huang, Z., Wang, X., Yu, J. & Ding, B. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles. Small 14, 1801527 (2018).

    Article  Google Scholar 

  23. Wang, J. et al. Pistia-inspired photothermal fabric based on waste carbon fiber for low-cost vapor generation: an industrialization route. Adv. Funct. Mater. 32, 2201922 (2022).

    Article  CAS  Google Scholar 

  24. Das, S. S., Pedireddi, V. M., Bandopadhyay, A., Saha, P. & Chakraborty, S. Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation. Nano Lett. 19, 7191–7200 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, Y. et al. Long-term antibacterial protected cotton fabric coating by controlled release of chlorhexidine gluconate from halloysite nanotubes. RSC Adv. 7, 18917–18925 (2017).

    Article  CAS  Google Scholar 

  26. Fan, X. et al. A siphon-based spatial evaporation device for efficient salt-free interfacial steam generation. Desalination 552, 116442 (2023).

    Article  CAS  Google Scholar 

  27. Wu, S. et al. Spill-SOS: self-pumping siphon-capillary oil recovery. ACS Nano 13, 13027–13036 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Schellbach, S. L., Monteiro, S. N. & Drelich, J. W. A novel method for contact angle measurements on natural fibers. Mater. Lett. 164, 599–604 (2016).

    Article  CAS  Google Scholar 

  29. Zhu, G., Fang, Y., Zhao, L., Wang, J. & Chen, W. Prediction of structural parameters and air permeability of cotton woven fabric. Text. Res. J. 88, 1650–1659 (2018).

    Article  CAS  Google Scholar 

  30. Li, C. et al. Bioinspired inner microstructured tube controlled capillary rise. Proc. Natl Acad. Sci. USA 116, 12704–12709 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dong, G., Cha-Umpong, W., Hou, J., Ji, C. & Chen, V. Open-source industrial-scale module simulation: paving the way towards the right configuration choice for membrane distillation. Desalination 464, 48–62 (2019).

    Article  CAS  Google Scholar 

  32. Yu, H., Yang, X., Wang, R. & Fane, A. G. Numerical simulation of heat and mass transfer in direct membrane distillation in a hollow fiber module with laminar flow. J. Membr. Sci. 384, 107–116 (2011).

    Article  CAS  Google Scholar 

  33. Khalifa, A. E. Water and air gap membrane distillation for water desalination—an experimental comparative study. Sep. Purif. Technol. 141, 276–284 (2015).

    Article  CAS  Google Scholar 

  34. Alkhudhiri, A., Darwish, N. & Hilal, N. Produced water treatment: application of air gap membrane distillation. Desalination 309, 46–51 (2013).

    Article  CAS  Google Scholar 

  35. Alklaibi, A. M. & Lior, N. Transport analysis of air-gap membrane distillation. J. Membr. Sci. 255, 239–253 (2005).

    Article  CAS  Google Scholar 

  36. Ansari, A. et al. Downstream variations of air-gap membrane distillation and comparative study with direct contact membrane distillation: a modelling approach. Desalination 526, 115539 (2022).

    Article  CAS  Google Scholar 

  37. Hitsov, I., De Sitter, K., Dotremont, C., Cauwenberg, P. & Nopens, I. Full-scale validated air gap membrane distillation (AGMD) model without calibration parameters. J. Membr. Sci. 533, 309–320 (2017).

    Article  CAS  Google Scholar 

  38. Kalla, S., Upadhyaya, S. & Singh, K. Principles and advancements of air gap membrane distillation. Rev. Chem. Eng. 35, 817–859 (2019).

    Article  CAS  Google Scholar 

  39. Xu, S. et al. Air-gap diffusion distillation: theory and experiment. Desalination 467, 64–78 (2019).

    Article  CAS  Google Scholar 

  40. Alsaadi, A. S. et al. Modeling of air-gap membrane distillation process: a theoretical and experimental study. J. Membr. Sci. 445, 53–65 (2013).

    Article  CAS  Google Scholar 

  41. Swaminathan, J. & Lienhard V, J. H. Energy efficiency of sweeping gas membrane distillation desalination cycles. Proceedings of the 22nd National and 11th International ISHMT-ASME Heat and Mass Transfer Conference https://web.mit.edu/lienhard/www/papers/conf/SWAMINATHAN_ISHMT_2013.pdf (2013).

  42. Chen, Y., Feng, D., Lin, S. & Wang, Z. Quantifying the benefits of membranes with ultrahigh vapor permeability for membrane distillation. ACS ES&T Eng. https://doi.org/10.1021/acsestengg.3c00010 (2023).

    Article  Google Scholar 

  43. Noamani, S., Niroomand, S., Rastgar, M., Azhdarzadeh, M. & Sadrzadeh, M. Modeling of air-gap membrane distillation and comparative study with direct contact membrane distillation. Ind. Eng. Chem. Res. 59, 21930–21947 (2020).

    Article  CAS  Google Scholar 

  44. Kalla, S., Upadhyaya, S., Singh, K. & Baghel, R. Experimental and mathematical study of air gap membrane distillation for aqueous HCl azeotropic separation. J. Chem. Technol. Biotechnol. 94, 63–78 (2019).

    Article  CAS  Google Scholar 

  45. Said, I. A., Chomiak, T., Floyd, J. & Li, Q. Sweeping gas membrane distillation (SGMD) for wastewater treatment, concentration, and desalination: a comprehensive review. Chem. Eng. Process. Process Intensif. 153, 107960 (2020).

    Article  CAS  Google Scholar 

  46. Abu-Zeid, M. A. E.-R. et al. A comprehensive review of vacuum membrane distillation technique. Desalination 356, 1–14 (2015).

    Article  CAS  Google Scholar 

  47. Lu, K. J., Zuo, J., Chang, J., Kuan, H. N. & Chung, T. S. Omniphobic hollow-fiber membranes for vacuum membrane distillation. Environ. Sci. Technol. 52, 4472–4480 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Banat, F., Al-Rub, F. A. & Bani-Melhem, K. Desalination by vacuum membrane distillation: sensitivity analysis. Sep. Purif. Technol. 33, 75–87 (2003).

    Article  CAS  Google Scholar 

  49. Alklaibi, A. M. & Lior, N. Heat and mass transfer resistance analysis of membrane distillation. J. Membr. Sci. 282, 362–369 (2006).

    Article  CAS  Google Scholar 

  50. Rivier, C. A., Garcı́a-Payo, M. C., Marison, I. W. & von Stockar, U. Separation of binary mixtures by thermostatic sweeping gas membrane distillation: I. theory and simulations. J. Membr. Sci. 201, 1–16 (2002).

    Article  CAS  Google Scholar 

  51. Tomaszewska, M. in Encyclopedia of Membranes (eds Drioli, E. & Giorno, L.) 33–34 (Springer Berlin Heidelberg, 2016).

  52. Lee, S. & Straub, A. P. Analysis of volatile and semivolatile organic compound transport in membrane distillation modules. ACS ES&T Eng. 2, 1188–1199 (2022).

    Article  CAS  Google Scholar 

  53. Rezaei, M. et al. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Res. 139, 329–352 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Li, C. et al. Elucidating the trade-off between membrane wetting resistance and water vapor flux in membrane distillation. Environ. Sci. Technol. 54, 10333–10341 (2020).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, Z., Chen, Y., Sun, X., Duddu, R. & Lin, S. Mechanism of pore wetting in membrane distillation with alcohol vs. surfactant. J. Membr. Sci. 559, 183–195 (2018).

    Article  CAS  Google Scholar 

  56. Lu, K.-J., Chen, Y. & Chung, T.-S. Design of omniphobic interfaces for membrane distillation—a review. Water Res. 162, 64–77 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Tijing, L. D. et al. Fouling and its control in membrane distillation—a review. J. Membr. Sci. 475, 215–244 (2015).

    Article  CAS  Google Scholar 

  58. Xu, L.-P. et al. Capillary-driven spontaneous oil/water separation by superwettable twines. Nanoscale 7, 13164–13167 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Y. et al. Mussel-inspired design of a self-adhesive agent for durable moisture management and bacterial inhibition on PET fabric. Adv. Mater. 33, 2100140 (2021).

    Article  CAS  Google Scholar 

  60. Chen, S., Li, L., Zhao, C. & Zheng, J. Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51, 5283–5293 (2010).

    Article  CAS  Google Scholar 

  61. Ye, Y. et al. Microbubble aeration enhances performance of vacuum membrane distillation desalination by alleviating membrane scaling. Water Res. 149, 588–595 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Warsinger, D. M. et al. Scaling and fouling in membrane distillation for desalination applications: a review. Desalination 356, 294–313 (2015).

    Article  CAS  Google Scholar 

  63. Christie, K. S. S., Yin, Y., Lin, S. & Tong, T. Distinct behaviors between gypsum and silica scaling in membrane distillation. Environ. Sci. Technol. 54, 568–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Tong, T., Wallace, A. F., Zhao, S. & Wang, Z. Mineral scaling in membrane desalination: mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes. J. Membr. Sci. 579, 52–69 (2019).

    Article  CAS  Google Scholar 

  65. Su, C. et al. Robust superhydrophobic membrane for membrane distillation with excellent scaling resistance. Environ. Sci. Technol. 53, 11801–11809 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. McBride, S. A., Girard, H.-L. & Varanasi, K. K. Crystal critters: self-ejection of crystals from heated, superhydrophobic surfaces. Sci. Adv. 7, eabe6960 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pan, Y. et al. Simple design of a porous solar evaporator for salt-free desalination and rapid evaporation. Environ. Sci. Technol. 56, 11818–11826 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Karanikola, V., Boo, C., Rolf, J. & Elimelech, M. Engineered slippery surface to mitigate gypsum scaling in membrane distillation for treatment of hypersaline industrial wastewaters. Environ. Sci. Technol. 52, 14362–14370 (2018).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, Y., Lu, K.-J. & Chung, T.-S. An omniphobic slippery membrane with simultaneous anti-wetting and anti-scaling properties for robust membrane distillation. J. Membr. Sci. 595, 117572 (2020).

    Article  CAS  Google Scholar 

  70. Bico, J. & Quere, D. Rise of liquids and bubbles in angular capillary tubes. J. Colloid Interface Sci. 247, 162–166 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the financial support from National Key Research Development Program of China (2021YFC3201404).

Author information

Authors and Affiliations

Authors

Contributions

Y.C. performed the modelling of MD and FD and wrote the draft. Z.W. and Y.C. designed the experiment. S.Y. carried out the experiments. Z.W. and M.E. conceived the idea, supervised the research and revised the manuscript.

Corresponding authors

Correspondence to Zhangxin Wang or Menachem Elimelech.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Tiezheng Tong and Xuan Zhang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Text 1–6 and Tables 1 and 2.

Supplementary Data 1

Data for Supplementary Figs. 3–5.

Source data

Source Data Fig. 1

Data for Figs. 3–5 in the main text.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yang, S., Wang, Z. et al. Transforming membrane distillation to a membraneless fabric distillation for desalination. Nat Water 2, 52–61 (2024). https://doi.org/10.1038/s44221-023-00174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00174-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing