Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Pressure-driven membrane desalination

Abstract

Pressure-driven membrane desalination (PMD), such as reverse osmosis or nanofiltration, is an energy-efficient technology that addresses water shortages by using saline waters to augment freshwater supplies. This Primer describes several key methodological aspects of PMD, including membrane fabrication, characterization and performance evaluation; system modelling; process configurations; and applications. Thin-film composite polyamide membranes represent the state of the art in reverse osmosis and nanofiltration membranes and are the focus of the membrane development discussion. First, thin-film composite polyamide membrane fabrication using interfacial polymerization and alternative methods is discussed, followed by an exploration of techniques for characterizing the morphological, structural and interfacial properties. Experimental procedures and model frameworks for evaluating membrane performance are introduced, noting caveats in data collection, interpretation and reproducibility, with best practices recommended. Additionally, the general method for modelling the module-scale behaviour of PMD processes is introduced, alongside process configurations for existing and emerging applications. Finally, an outlook for the development of PMD is provided, highlighting the most meaningful directions for future research to further advance PMD beyond the current state of the art.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of a seawater reverse osmosis desalination plant and spiral-wound module.
Fig. 2: Membrane fabrication methods.
Fig. 3: Advanced imaging characterization results of thin-film composite polyamide membranes.
Fig. 4: Representative results of non-microscopic characterization of structural, chemical and interfacial properties of thin-film composite polyamide membranes.
Fig. 5: Reverse osmosis and nanofiltration models at the coupon and module scale.
Fig. 6: Reverse osmosis treatment train and configurations.
Fig. 7: The use of reverse osmosis and its variants in brine management.

Similar content being viewed by others

References

  1. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    ADS  CAS  PubMed  Google Scholar 

  2. Loeb, S. & Sourirajan, S. Sea water demineralization by means of an osmotic membrane. Saline Water Convers. II 38, 117–132 (1963).

    CAS  Google Scholar 

  3. Cadotte, J. E., Petersen, R. J., Larson, R. E. & Erickson, E. E. A new thin-film composite seawater reverse osmosis membrane. Desalination 32, 25–31 (1980).

    Google Scholar 

  4. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021). This article provides a comprehensive review on the fabrication and characterization of thin-film composite polyamide membranes.

    CAS  PubMed  Google Scholar 

  5. Mohammad, A. W. et al. Nanofiltration membranes review: recent advances and future prospects. Desalination 356, 226–254 (2015).

    CAS  Google Scholar 

  6. Zhao, Y. et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review. Environ. Sci. Technol. 55, 1359–1376 (2021).

    ADS  CAS  PubMed  Google Scholar 

  7. Spiegler, K. S. & El-Sayed, Y. M. The energetics of desalination processes. Desalination 134, 109–128 (2001).

    CAS  Google Scholar 

  8. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res. 43, 2317–2348 (2009).

    CAS  PubMed  Google Scholar 

  9. Semiat, R. Energy issues in desalination processes. Environ. Sci. Technol. 42, 8193–8201 (2008).

    ADS  CAS  PubMed  Google Scholar 

  10. Lin, S. Energy efficiency of desalination: fundamental insights from intuitive interpretation. Env. Sci. Technol. 54, 76–84 (2019). This article presents an analysis to show why pressure-driven membrane desalination is intrinsically energy-efficient.

    Google Scholar 

  11. Werber, R. J., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Env. Sci. Technol. Lett. 3, 112–120 (2016).

    CAS  Google Scholar 

  12. Verbeke, R., Gómez, V. & Vankelecom, I. F. J. Chlorine-resistance of reverse osmosis (RO) polyamide membranes. Prog. Polym. Sci. 72, 1–15 (2017).

    CAS  Google Scholar 

  13. Jiang, S., Li, Y. & Ladewig, B. P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 595, 567–583 (2017).

    ADS  CAS  PubMed  Google Scholar 

  14. Davenport, D. M., Deshmukh, A., Werber, J. R. & Elimelech, M. High-pressure reverse osmosis for energy-efficient hypersaline brine desalination: current status, design considerations, and research needs. Environ. Sci. Technol. Lett. 5, 467–475 (2018).

    CAS  Google Scholar 

  15. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    ADS  CAS  Google Scholar 

  16. Verbeke, R. et al. Chlorine-resistant epoxide-based membranes for sustainable water desalination. Environ. Sci. Technol. Lett. 8, 818–824 (2021).

    CAS  Google Scholar 

  17. Wang, Z., Deshmukh, A., Du, Y. & Elimelech, M. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes. Water Res. 170, 115317 (2020).

    CAS  PubMed  Google Scholar 

  18. Nativ, P., Leifman, O., Lahav, O. & Epsztein, R. Desalinated brackish water with improved mineral composition using monovalent-selective nanofiltration followed by reverse osmosis. Desalination 520, 115364 (2021).

    CAS  Google Scholar 

  19. Ismail, A. F. & Matsuura, T. Progress in transport theory and characterization method of reverse osmosis (RO) membrane in past fifty years. Desalination 434, 2–11 (2018).

    CAS  Google Scholar 

  20. Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39, 1–42 (2014).

    CAS  Google Scholar 

  21. Wijmans, J. G. & Baker, R. W. The solution-diffusion model: a review. J. Memb. Sci. 107, 1–21 (1995).

    CAS  Google Scholar 

  22. Wang, L. et al. Water transport in reverse osmosis membranes is governed by pore flow, not a solution-diffusion mechanism. Sci. Adv. 9, eadf8488 (2023). This article reports experimental and simulation-based evidence to support pore flow as the true mechanism for water transport in reverse osmosis membranes.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, L. et al. Salt and water transport in reverse osmosis membranes: beyond the solution-diffusion model. Environ. Sci. Technol. 55, 16665–16675 (2021). This article introduces a new solution-friction framework for modelling water and salt transport in reverse osmosis membranes.

    ADS  CAS  PubMed  Google Scholar 

  24. Zhou, X. et al. Intrapore energy barriers govern ion transport and selectivity of desalination membranes. Sci. Adv. 6, eabd9045 (2023).

    ADS  Google Scholar 

  25. Heiranian, M., M. DuChanois, R. L., Ritt, C., Violet, C. & Elimelech, M. Molecular simulations to elucidate transport phenomena in polymeric membranes. Environ. Sci. Technol. 56, 3313–3323 (2022).

    ADS  CAS  PubMed  Google Scholar 

  26. Faucher, S. et al. Critical knowledge gaps in mass transport through single-digit nanopores: a review and perspective. J. Phys. Chem. C 123, 21309–21326 (2019).

    CAS  Google Scholar 

  27. Lu, C. et al. In situ characterization of dehydration during ion transport in polymeric nanochannels. J. Am. Chem. Soc. 143, 14242–14252 (2021).

    CAS  PubMed  Google Scholar 

  28. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    ADS  CAS  PubMed  Google Scholar 

  29. Aluru, N. R. et al. Fluids and electrolytes under confinement in single-digit nanopores. Chem. Rev. 123, 2737–2831 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee, K. P., Arnot, T. C. & Mattia, D. A review of reverse osmosis membrane materials for desalination — development to date and future potential. J. Memb. Sci. 370, 1–22 (2011).

    CAS  Google Scholar 

  31. Song, Y., Sun, P., Henry, L. L. & Sun, B. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J. Memb. Sci. 251, 67–79 (2005).

    CAS  Google Scholar 

  32. Freger, V. & Ramon, G. Z. Polyamide desalination membranes: formation, structure, and properties. Prog. Polym. Sci. 122, 101451 (2021).

    CAS  Google Scholar 

  33. Chai, G. Y. & Krantz, W. B. Formation and characterization of polyamide membranes via interfacial polymerization. J. Memb. Sci. 93, 175–192 (1994).

    CAS  Google Scholar 

  34. Nowbahar, A. et al. Measuring interfacial polymerization kinetics using microfluidic interferometry. J. Am. Chem. Soc. 140, 3173–3176 (2018).

    CAS  PubMed  Google Scholar 

  35. Freger, V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 19, 4791–4797 (2003).

    CAS  Google Scholar 

  36. Xie, W. et al. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Memb. Sci. 403–404, 152–161 (2012).

    Google Scholar 

  37. Li, L., Zhang, S., Zhang, X. & Zheng, G. Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine. J. Memb. Sci. 315, 20–27 (2008).

    CAS  Google Scholar 

  38. Yao, Y. et al. High performance polyester reverse osmosis desalination membrane with chlorine resistance. Nat. Sustain. 4, 138–146 (2021).

    Google Scholar 

  39. Ghosh, A. K., Jeong, B. H., Huang, X. & Hoek, E. M. V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Memb. Sci. 311, 34–45 (2008).

    CAS  Google Scholar 

  40. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lu, Y. et al. Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. Proc. Natl Acad. Sci. USA 118, e2019891118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Khorshidi, B., Thundat, T., Pernitsky, D. & Sadrzadeh, M. A parametric study on the synergistic impacts of chemical additives on permeation properties of thin film composite polyamide membrane. J. Memb. Sci. 535, 248–257 (2017).

    CAS  Google Scholar 

  43. Mansourpanah, Y., Madaeni, S. S. & Rahimpour, A. Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance. J. Memb. Sci. 343, 219–228 (2009).

    CAS  Google Scholar 

  44. Elfa Peng, L., Yao, Z., Yang, Z., Guo, H. & Tang, Y. C. Dissecting the role of substrate on the morphology and separation properties of thin film composite polyamide membranes: seeing is believing. Environ. Sci. Technol. 54, 6978–6986 (2020).

    ADS  Google Scholar 

  45. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    ADS  CAS  PubMed  Google Scholar 

  46. Ma, X. H. et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity. Environ. Sci. Technol. Lett. 5, 123–130 (2018).

    CAS  Google Scholar 

  47. Gao, S. et al. Ultrathin polyamide nanofiltration membrane fabricated on brush-painted single-walled carbon nanotube network support for ion sieving. ACS Nano 13, 5278–5290 (2019).

    CAS  PubMed  Google Scholar 

  48. Dai, R., Li, J. & Wang, Z. Constructing interlayer to tailor structure and performance of thin-film composite polyamide membranes: a review. Adv. Colloid Interface Sci. 282, 102204 (2020).

    CAS  PubMed  Google Scholar 

  49. Shao, S. et al. Nanofiltration membranes with crumpled polyamide films: a critical review on mechanisms, performances, and environmental applications. Environ. Sci. Technol. 56, 12811–12827 (2022).

    ADS  CAS  PubMed  Google Scholar 

  50. Yang, Z., Guo, H. & Tang, C. Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Memb. Sci. 590, 117297 (2019). This article provides a review on quantifying the performance of thin-film composite polyamide membranes on the basis of the solution-diffusion theory.

    Google Scholar 

  51. Peng, L. E. et al. A critical review on porous substrates of TFC polyamide membranes: mechanisms, membrane performances, and future perspectives. J. Memb. Sci. 641, 119871 (2022).

    CAS  Google Scholar 

  52. Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

    ADS  CAS  PubMed  Google Scholar 

  53. Kang, Y. et al. PIP/TMC interfacial polymerization with electrospray: novel loose nanofiltration membrane for dye wastewater treatment. ACS Appl. Mater. Interfaces 12, 36148–36158 (2020).

    PubMed  Google Scholar 

  54. Badalov, S., Oren, Y. & Arnusch, C. J. Ink-jet printing assisted fabrication of patterned thin film composite membranes. J. Memb. Sci. 493, 508–514 (2015).

    CAS  Google Scholar 

  55. He, J. et al. Molecular mechanisms of thickness-dependent water desalination in polyamide reverse-osmosis membranes. J. Memb. Sci. 674, 121498 (2023).

    CAS  Google Scholar 

  56. Ma, X.-H. et al. Interfacial polymerization with electrosprayed microdroplets: toward controllable and ultrathin polyamide membranes. Environ. Sci. Technol. Lett. 5, 117–122 (2018).

    CAS  Google Scholar 

  57. Harish, J. J., DeRose, P. M. & Bruening, M. L. Synthesis of passivating, nylon-like coatings through cross-linking of ultrathin polyelectrolyte films. J. Am. Chem. Soc. 121, 1978–1979 (1999).

    Google Scholar 

  58. Liang, Y. & Lin, S. Mechanism of permselectivity enhancement in polyelectrolyte-dense nanofiltration membranes via surfactant-assembly intercalation. Environ. Sci. Technol. 55, 738–748 (2020).

    ADS  PubMed  Google Scholar 

  59. DuChanois, R. M., Epsztein, R., Trivedi, J. A. & Elimelech, M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte–salt interactions. J. Memb. Sci. 581, 413–420 (2019).

    CAS  Google Scholar 

  60. Gu, J.-E. et al. Molecular layer-by-layer assembled thin-film composite membranes for water desalination. Adv. Mater. 25, 4778–4782 (2013).

    CAS  PubMed  Google Scholar 

  61. Jin, W., Toutianoush, A. & Tieke, B. Use of polyelectrolyte layer-by-layer assemblies as nanofiltration and reverse osmosis membranes. Langmuir 19, 2550–2553 (2003).

    CAS  Google Scholar 

  62. Song, X. et al. Intrinsic nanoscale structure of thin film composite polyamide membranes: connectivity, defects, and structure–property correlation. Environ. Sci. Technol. 54, 3559–3569 (2020).

    ADS  CAS  PubMed  Google Scholar 

  63. Pacheco, F. A., Pinnau, I., Reinhard, M. & Leckie, J. O. Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques. J. Memb. Sci. 358, 51–59 (2010).

    CAS  Google Scholar 

  64. Tan, Z., Chen, S., Peng, X., Zhang, L. & Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 360, 518–521 (2018).

    ADS  CAS  PubMed  Google Scholar 

  65. Guo, H. et al. A one-step rapid assembly of thin film coating using green coordination complexes for enhanced removal of trace organic contaminants by membranes. Environ. Sci. Technol. 51, 12638–12643 (2017).

    ADS  CAS  PubMed  Google Scholar 

  66. Ren, Y. et al. High flux thin film nanocomposite membranes based on porous organic polymers for nanofiltration. J. Memb. Sci. 585, 19–28 (2019).

    CAS  Google Scholar 

  67. Wang, F. et al. Enhanced water permeability and antifouling property of coffee-ring-textured polyamide membranes by in situ incorporation of a zwitterionic metal–organic framework. Environ. Sci. Technol. 55, 5324–5334 (2021).

    ADS  CAS  PubMed  Google Scholar 

  68. Kłosowski, M. M. et al. Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers. J. Memb. Sci. 520, 465–476 (2016).

    Google Scholar 

  69. Lu, X. et al. Elements provide a clue: nanoscale characterization of thin-film composite polyamide membranes. ACS Appl. Mater. Interfaces 7, 16917–16922 (2015).

    CAS  PubMed  Google Scholar 

  70. Tang, C. Y., Kwon, Y. N. & Leckie, J. O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers. Desalination 242, 168–182 (2009).

    CAS  Google Scholar 

  71. Hilal, N., Al-Zoubi, H., Darwish, N. A. & Mohammad, A. W. Characterisation of nanofiltration membranes using atomic force microscopy. Desalination 177, 187–199 (2005).

    CAS  Google Scholar 

  72. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    ADS  CAS  PubMed  Google Scholar 

  73. Culp, T. E. et al. Electron tomography reveals details of the internal microstructure of desalination membranes. Proc. Natl Acad. Sci. USA 115, 8694–8699 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pacheco, F., Sougrat, R., Reinhard, M., Leckie, J. O. & Pinnau, I. 3D visualization of the internal nanostructure of polyamide thin films in RO membranes. J. Memb. Sci. 501, 33–44 (2016).

    CAS  Google Scholar 

  75. Hung, W.-S. et al. Non-destructive means of probing a composite polyamide membrane for characteristic free volume, void, and chemical composition. RSC Adv. 6, 85019–85025 (2016).

    ADS  CAS  Google Scholar 

  76. Chen, H. et al. Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization. Macromolecules 40, 7542–7557 (2007).

    ADS  CAS  Google Scholar 

  77. Sharma, V. K., Singh, P. S., Gautam, S., Mitra, S. & Mukhopadhyay, R. Diffusion of water in nanoporous NF polyamide membrane. Chem. Phys. Lett. 478, 56–60 (2009).

    ADS  CAS  Google Scholar 

  78. Fu, Q. et al. Molecular structure of aromatic reverse osmosis polyamide barrier layers. ACS Macro Lett. 8, 352–356 (2019).

    CAS  PubMed  Google Scholar 

  79. Singh, P. S., Ray, P., Xie, Z. & Hoang, M. Synchrotron SAXS to probe cross-linked network of polyamide ‘reverse osmosis’ and ‘nanofiltration’ membranes. J. Memb. Sci. 421–422, 51–59 (2012).

    Google Scholar 

  80. Ho Kim, S., Kwak, S.-Y. & Suzuki, T. Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. Environ. Sci. Technol. 39, 1764–1770 (2005).

    ADS  Google Scholar 

  81. Mahmood, A. & Wang, J.-L. A review of grazing incidence small- and wide-angle X-ray scattering techniques for exploring the film morphology of organic solar cells. Sol. RRL 4, 2000337 (2020).

    CAS  Google Scholar 

  82. Hilal, N., Ismail, A. F., Matsuura, T. & Oatley-Radcliffe, D. Membrane Characterization (Elsevier, 2017). This book introduces the various experimental techniques for membrane characterizations.

  83. Ben-David, A., Oren, Y. & Freger, V. Thermodynamic factors in partitioning and rejection of organic compounds by polyamide composite membranes. Environ. Sci. Technol. 40, 7023–7028 (2006).

    ADS  CAS  PubMed  Google Scholar 

  84. Zhu, M. M. et al. Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers. J. Colloid Interface Sci. 584, 225–235 (2021).

    ADS  CAS  PubMed  Google Scholar 

  85. García-Martín, N. et al. Pore size analysis from retention of neutral solutes through nanofiltration membranes. The contribution of concentration–polarization. Desalination 344, 1–11 (2014).

    Google Scholar 

  86. Fetters, L. J., Hadjichristidis, N., Lindner, J. S. & Mays, J. W. Molecular weight dependence of hydrodynamic and thermodynamic properties for well‐defined linear polymers in solution. J. Phys. Chem. Ref. Data 23, 619–640 (1994).

    ADS  CAS  Google Scholar 

  87. Lee, H., Venable, R. M., MacKerell, A. D. Jr & Pastor, R. W. Molecular dynamics studies of polyethylene oxide and polyethylene glycol: hydrodynamic radius and shape anisotropy. Biophys. J. 95, 1590–1599 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, R. & Lin, S. Pore model for nanofiltration: history, theoretical framework, key predictions, limitations, and prospects. J. Memb. Sci. 620, 118809 (2021). This article provides a comprehensive review summarizing theoretical framework, procedure of implementation and limitations of the Donnan-steric-pore model with dielectric exclusion.

    CAS  Google Scholar 

  89. Bowen, W. R., Mohammad, A. W. & Hilal, N. Characterisation of nanofiltration membranes for predictive purposes — use of salts, uncharged solutes and atomic force microscopy. J. Memb. Sci. 126, 91–105 (1997).

    CAS  Google Scholar 

  90. Tang, C. Y., Kwon, Y. N. & Leckie, J. O. Probing the nano- and micro-scales of reverse osmosis membranes — a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements. J. Memb. Sci. 287, 146–156 (2007).

    CAS  Google Scholar 

  91. Jeong, B. H. et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Memb. Sci. 294, 1–7 (2007).

    CAS  Google Scholar 

  92. Chastain, J. & King, R. C. Jr. Handbook of X-Ray Photoelectron Spectroscopy. Perkin-Elmer Corporation 40 (Perkin-Elmer Corporation, 1992).

  93. Tang, C. Y., Kwon, Y. N. & Leckie, J. O. Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry. Desalination 242, 149–167 (2009).

    CAS  Google Scholar 

  94. Zimudzi, T. J. et al. Quantifying carboxylic acid concentration in model polyamide desalination membranes via Fourier transform infrared spectroscopy. Macromolecules 51, 6623–6629 (2018).

    ADS  CAS  Google Scholar 

  95. Freger, V. et al. Characterization of novel acid-stable NF membranes before and after exposure to acid using ATR-FTIR, TEM and AFM. J. Memb. Sci. 256, 134–142 (2005).

    CAS  Google Scholar 

  96. Nikkola, J. et al. Surface modification of thin film composite RO membrane for enhanced anti-biofouling performance. J. Memb. Sci. 444, 192–200 (2013).

    CAS  Google Scholar 

  97. Zhou, S. et al. Unveiling the growth of polyamide nanofilms at water/organic free interfaces: toward enhanced water/salt selectivity. Environ. Sci. Technol. 56, 10279–10288 (2022).

    ADS  CAS  PubMed  Google Scholar 

  98. Chen, D., Werber, J. R., Zhao, X. & Elimelech, M. A facile method to quantify the carboxyl group areal density in the active layer of polyamide thin-film composite membranes. J. Memb. Sci. 534, 100–108 (2017).

    CAS  Google Scholar 

  99. Ritt, C. L. et al. Ionization behavior of nanoporous polyamide membranes. Proc. Natl Acad. Sci. USA 117, 30191–30200 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Tiraferri, A. & Elimelech, M. Direct quantification of negatively charged functional groups on membrane surfaces. J. Memb. Sci. 389, 499–508 (2012).

    CAS  Google Scholar 

  101. Perry, L. A. & Coronell, O. Reliable, bench-top measurements of charge density in the active layers of thin-film composite and nanocomposite membranes using quartz crystal microbalance technology. J. Memb. Sci. 429, 23–33 (2013).

    CAS  Google Scholar 

  102. Coronell, O., Mariñas, B. J., Zhang, X. & Cahill, D. G. Quantification of functional groups and modeling of their ionization behavior in the active layer of FT30 reverse osmosis membrane. Environ. Sci. Technol. 42, 5260–5266 (2008).

    ADS  CAS  PubMed  Google Scholar 

  103. Möckel, D., Staude, E., Dal-Cin, M., Darcovich, K. & Guiver, M. Tangential flow streaming potential measurements: hydrodynamic cell characterization and zeta potentials of carboxylated polysulfone membranes. J. Memb. Sci. 145, 211–222 (1998).

    Google Scholar 

  104. Hurwitz, G., Guillen, G. R. & Hoek, E. M. V. Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements. J. Memb. Sci. 349, 349–357 (2010).

    CAS  Google Scholar 

  105. Elimelech, M. & O’Melia, C. R. Effect of electrolyte type on the electrophoretic mobility of polystyrene latex colloids. Colloids Surf. 44, 165–178 (1990).

    CAS  Google Scholar 

  106. Childress, A. E. & Elimelech, M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Memb. Sci. 119, 253–268 (1996).

    CAS  Google Scholar 

  107. Xu, P. et al. Positive charged PEI-TMC composite nanofiltration membrane for separation of Li+ and Mg2+ from brine with high Mg2+/Li+ ratio. Desalination 449, 57–68 (2019).

    CAS  Google Scholar 

  108. Ismail, M. F., Islam, M. A., Khorshidi, B., Tehrani-Bagha, A. & Sadrzadeh, M. Surface characterization of thin-film composite membranes using contact angle technique: review of quantification strategies and applications. Adv. Colloid Interface Sci. 299, 102524 (2022).

    CAS  PubMed  Google Scholar 

  109. Li, S. L., Wu, P., Wang, J., Wang, J. & Hu, Y. Fabrication of high performance polyamide reverse osmosis membrane from monomer 4-morpholino-m-phenylenediamine and tailoring with zwitterions. Desalination 473, 114169 (2020).

    Google Scholar 

  110. Zhang, Y. et al. Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling. Appl. Surf. Sci. 419, 177–187 (2017).

    ADS  CAS  Google Scholar 

  111. Liu, C. et al. An outstanding antichlorine and antibacterial membrane with quaternary ammonium salts of alkenes via in situ polymerization for textile wastewater treatment. Chem. Eng. J. 384, 123306 (2020).

    CAS  Google Scholar 

  112. Ismail, M. F., Khorshidi, B. & Sadrzadeh, M. New insights into the impact of nanoscale surface heterogeneity on the wettability of polymeric membranes. J. Memb. Sci. 590, 117270 (2019).

    Google Scholar 

  113. Van der Bruggen, B. in Fundamental Modelling of Membrane Systems: Membrane and Process Performance Ch. 2 25–70 (Elsevier, 2018).

  114. Tansel, B. et al. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes. Sep. Purif. Technol. 51, 40–47 (2006).

    CAS  Google Scholar 

  115. Davenport, D. M. et al. Thin film composite membrane compaction in high-pressure reverse osmosis. J. Memb. Sci. 610, 118268 (2020).

    CAS  Google Scholar 

  116. Pendergast, M. T. M., Ghosh, A. K. & Hoek, E. M. V. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 308, 180–185 (2013).

    CAS  Google Scholar 

  117. Pendergast, M. T. M., Nygaard, J. M., Ghosh, A. K. & Hoek, E. M. V. Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261, 255–263 (2010).

    CAS  Google Scholar 

  118. Zydney, A. L. Stagnant film model for concentration polarization in membrane systems. J. Memb. Sci. 130, 275–281 (1997).

    CAS  Google Scholar 

  119. Sablani, S., Goosen, M., Al-Belushi, R. & Wilf, M. Concentration polarization in ultrafiltration and reverse osmosis: a critical review. Desalination 141, 269–289 (2001).

    CAS  Google Scholar 

  120. Gao, H. et al. Revolutionizing membrane design using machine learning-Bayesian optimization. Environ. Sci. Technol. 56, 2572–2581 (2022).

    ADS  CAS  PubMed  Google Scholar 

  121. Ritt, C. L. et al. The open membrane database: synthesis–structure–performance relationships of reverse osmosis membranes. J. Memb. Sci. 641, 119927 (2022). This article introduces the Open Membrane Database, which is a web-based platform for data depository and analysis.

    CAS  Google Scholar 

  122. Mai, Z. et al. Activity-derived model for water and salt transport in reverse osmosis membranes: a combination of film theory and electrolyte theory. Desalination 469, 114094 (2019).

    CAS  Google Scholar 

  123. Biesheuvel, P. M., Rutten, S. B., Ryzhkov, I. I., Porada, S. & Elimelech, M. Theory for salt transport in charged reverse osmosis membranes: novel analytical equations for desalination performance and experimental validation. Desalination 557, 116580 (2023). This article reports a new set of analytical equations to describe the transport of a single salt in reverse osmosis derived based on the solution-friction framework.

    CAS  Google Scholar 

  124. Oren, Y. S. & Biesheuvel, P. M. Theory of ion and water transport in reverse-osmosis membranes. Phys. Rev. Appl. 9, 24034 (2018).

    ADS  CAS  Google Scholar 

  125. Wang, L. et al. Significance of Co-ion partitioning in salt transport through polyamide reverse osmosis membranes. Environ. Sci. Technol. 57, 3930–3939 (2023).

    ADS  CAS  PubMed  Google Scholar 

  126. Yaroshchuk, A., Bruening, M. L. & Licón Bernal, E. E. Solution-diffusion–electro-migration model and its uses for analysis of nanofiltration, pressure-retarded osmosis and forward osmosis in multi-ionic solutions. J. Memb. Sci. 447, 463–476 (2013). This article introduces the solution-diffusion-electromigration model, which can be used for analysing transport of multiple ion species.

    CAS  Google Scholar 

  127. Yaroshchuk, A. & Bruening, M. L. An analytical solution of the solution-diffusion-electromigration equations reproduces trends in ion rejections during nanofiltration of mixed electrolytes. J. Memb. Sci. 523, 361–372 (2017).

    CAS  Google Scholar 

  128. Wang, R., He, R., He, T., Elimelech, M. & Lin, S. Performance metrics for nanofiltration-based selective separation for resource extraction and recovery. Nat. Water 1, 291–300 (2023).

    Google Scholar 

  129. Bowen, W. R. & Welfoot, J. S. Modelling the performance of membrane nanofiltration — critical assessment and model development. Chem. Eng. Sci. 57, 1121–1137 (2002).

    CAS  Google Scholar 

  130. Labban, O., Liu, C., Chong, T. H. & Lienhard V, J. H. Fundamentals of low-pressure nanofiltration: membrane characterization, modeling, and understanding the multi-ionic interactions in water softening. J. Memb. Sci. 521, 18–32 (2017).

    CAS  Google Scholar 

  131. Roy, Y., Sharqawy, M. H. & Lienhard, J. H. Modeling of flat-sheet and spiral-wound nanofiltration configurations and its application in seawater nanofiltration. J. Memb. Sci. 493, 360–372 (2015).

    CAS  Google Scholar 

  132. Rehman, D. & Lienhard, J. H. Global optimization for accurate and efficient parameter estimation in nanofiltration. J. Memb. Sci. Lett. 2, 100034 (2022).

    Google Scholar 

  133. Liang, Y., Dudchenko, A. V. & Mauter, M. S. Novel method for accurately estimating membrane transport properties and mass transfer coefficients in reverse osmosis. J. Memb. Sci. 679, 121686 (2023). Along with Rehman and Lienhard (2022), this article reports a similar approach of model parameter determination based on minimizing global error.

    CAS  Google Scholar 

  134. Biesheuvel, P. M., Porada, S., Elimelech, M. & Dykstra, J. E. Tutorial review of reverse osmosis and electrodialysis. J. Memb. Sci. 647, 120221 (2022).

    CAS  Google Scholar 

  135. Schwinge, J., Neal, P. R., Wiley, D. E., Fletcher, D. F. & Fane, A. G. Spiral wound modules and spacers: review and analysis. J. Memb. Sci. 242, 129–153 (2004).

    CAS  Google Scholar 

  136. Lin, S. & Elimelech, M. Staged reverse osmosis operation: configurations, energy efficiency, and application potential. Desalination 366, 9–14 (2015).

    CAS  Google Scholar 

  137. Warsinger, D. M. et al. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Res. 106, 272–282 (2016).

    CAS  PubMed  Google Scholar 

  138. Quon, H. et al. Pipe parity analysis of seawater desalination in the United States: exploring costs, energy, and reliability via case studies and scenarios of emerging. Technol. ACS EST Eng. 2, 434–445 (2021).

    Google Scholar 

  139. Okamoto, Y. & Lienhard, J. H. How RO membrane permeability and other performance factors affect process cost and energy use: a review. Desalination 470, 114064 (2019).

    CAS  Google Scholar 

  140. Khawaji, A. D., Kutubkhanah, I. K. & Wie, J. M. Advances in seawater desalination technologies. Desalination 221, 47–69 (2008).

    CAS  Google Scholar 

  141. Anis, S. F., Hashaikeh, R. & Hilal, N. Reverse osmosis pretreatment technologies and future trends: a comprehensive review. Desalination 452, 159–195 (2019).

    CAS  Google Scholar 

  142. Kim, J., Park, K., Yang, D. R. & Hong, S. A comprehensive review of energy consumption of seawater reverse osmosis desalination plants. Appl. Energy 254, 113652 (2019).

    CAS  Google Scholar 

  143. Sauvet-Goichon, B. Ashkelon desalination plant — a successful challenge. Desalination 203, 75–81 (2007).

    CAS  Google Scholar 

  144. Hermony, A., Sutzkover-Gutman, I., Talmi, Y. & Fine, O. Palmachim seawater desalination plant — seven years of expansions with uninterrupted operation together with process improvements. Desalination Water Treat. 55, 2526–2535 (2015).

    CAS  Google Scholar 

  145. Voutchkov, N. Energy use for membrane seawater desalination — current status and trends. Desalination 431, 2–14 (2018).

    CAS  Google Scholar 

  146. Amy, G. et al. Membrane-based seawater desalination: present and future prospects. Desalination 401, 16–21 (2017).

    CAS  Google Scholar 

  147. Xu, X. et al. Analysis of brackish water desalination for municipal uses: case studies on challenges and opportunities. ACS EST Eng. 2, 306–322 (2022).

    CAS  Google Scholar 

  148. Jones, E., Qadir, M., van Vliet, M. T. H., Smakhtin, V. & Kang, S. The state of desalination and brine production: a global outlook. Sci. Total Environ. 657, 1343–1356 (2019).

    ADS  CAS  PubMed  Google Scholar 

  149. Pan, S. Y., Haddad, A. Z., Kumar, A. & Wang, S. W. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. Water Res. 183, 116064 (2020).

    CAS  PubMed  Google Scholar 

  150. Mogheir, Y., Foul, A. A., Abuhabib, A. A. & Mohammad, A. W. Assessment of large scale brackish water desalination plants in the Gaza Strip. Desalination 314, 96–100 (2013).

    CAS  Google Scholar 

  151. Mickley, M. Updated and extended survey of US municipal desalination plants. Desalination and Water Purification Research and Development Program Report (US Department of the Interior Bureau of Reclamation Technical Service Center, 2018).

  152. Almulla, A., Eid, M., Côté, P. & Coburn, J. Developments in high recovery brackish water desalination plants as part of the solution to water quantity problems. Desalination 153, 237–243 (2003).

    CAS  Google Scholar 

  153. Karime, M., Bouguecha, S. & Hamrouni, B. RO membrane autopsy of Zarzis brackish water desalination plant. Desalination 220, 258–266 (2008).

    CAS  Google Scholar 

  154. Werber, J. R., Deshmukh, A. & Elimelech, M. Can batch or semi-batch processes save energy in reverse-osmosis desalination? Desalination 402, 109–122 (2017).

    CAS  Google Scholar 

  155. Bartman, A. R., McFall, C. W., Christofides, P. D. & Cohen, Y. Model-predictive control of feed flow reversal in a reverse osmosis desalination process. J. Process Control 19, 433–442 (2009).

    CAS  Google Scholar 

  156. Gu, H., Bartman, A. R., Uchymiak, M., Christofides, P. D. & Cohen, Y. Self-adaptive feed flow reversal operation of reverse osmosis desalination. Desalination 308, 63–72 (2013).

    CAS  Google Scholar 

  157. Patel, K. S., Maarten Biesheuvel, P. & Elimelech, M. Energy consumption of brackish water desalination: identifying the sweet spots for electrodialysis and reverse osmosis. ACS EST Eng. 1, 851–864 (2021).

    CAS  Google Scholar 

  158. Liu, X., Shanbhag, S., Bartholomew, T. V., Whitacre, J. F. & Mauter, M. S. Cost comparison of capacitive deionization and reverse osmosis for brackish water desalination. ACS EST Eng. 1, 261–273 (2020).

    Google Scholar 

  159. Drak, A. & Adato, M. Energy recovery consideration in brackish water desalination. Desalination 339, 34–39 (2014).

    CAS  Google Scholar 

  160. Global Water Intelligence. The International Desalination Association — Desalination & Reuse Handbook 2022-2023 (IDRA, 2023).

  161. Giammar, D. E. et al. Cost and energy metrics for municipal water reuse. ACS EST Eng. 2, 489–507 (2021).

    Google Scholar 

  162. Metcalf, Inc. AECOM Eddy, Asano, T., Burton, F. & Leverenz, H. Water reuse technologies and treatment systems: an overview. in Water Reuse: Issues, Technologies, and Applications (McGraw-Hill Education, 2007).

  163. Marron, L. E., Mitch, A. W., von Gunten, U. & Sedlak, L. D. A tale of two treatments: the multiple barrier approach to removing chemical contaminants during potable water reuse. Acc. Chem. Res. 52, 615–622 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Warsinger, D. M. et al. A review of polymeric membranes and processes for potable water reuse. Prog. Polym. Sci. 81, 209–237 (2018).

    CAS  Google Scholar 

  165. Tow, E. W. et al. Modeling the energy consumption of potable water reuse schemes. Water Res. X 13, 100126 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sim, A. & Mauter, M. S. Cost and energy intensity of US potable water reuse systems. Environ. Sci. Water Res. Technol. 7, 748–761 (2021).

    Google Scholar 

  167. Grant, S. B. et al. Taking the ‘waste’ out of ‘wastewater’ for human water security and ecosystem sustainability. Science https://doi.org/10.1126/science.1216852 (2012).

  168. Tong, T. & Elimelech, M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ. Sci. Technol. 50, 6846–6855 (2016).

    ADS  CAS  PubMed  Google Scholar 

  169. Davenport, D. M., Wang, L., Shalusky, E. & Elimelech, M. Design principles and challenges of bench-scale high-pressure reverse osmosis up to 150 bar. Desalination 517, 115237 (2021).

    CAS  Google Scholar 

  170. Chen, X. & Yin Yip, N. Unlocking high-salinity desalination with cascading osmotically mediated reverse osmosis: energy and operating pressure analysis. Environ. Sci. Technol. 52, 2242–2250 (2018).

    ADS  CAS  PubMed  Google Scholar 

  171. Bartholomew, T. V., Mey, L., Arena, J. T., Siefert, N. S. & Mauter, M. S. Osmotically assisted reverse osmosis for high salinity brine treatment. Desalination 421, 3–11 (2017).

    CAS  Google Scholar 

  172. Bartholomew, T. V. Cost optimization of osmotically assisted reverse osmosis. Environ. Sci. Technol. 52, 11813–11821 (2018).

    CAS  PubMed  Google Scholar 

  173. Wang, Z., Feng, D., Chen, Y., He, D. & Elimelech, M. Comparison of energy consumption of osmotically assisted reverse osmosis and low-salt-rejection reverse osmosis for brine management. Environ. Sci. Technol. 55, 10714–10723 (2021).

    ADS  CAS  PubMed  Google Scholar 

  174. Jiang, C. et al. Thin-film composite membranes with aqueous template-induced surface nanostructures for enhanced nanofiltration. J. Memb. Sci. 589, 117244 (2019).

    CAS  Google Scholar 

  175. Pranić, M., Kimani, E. M., Biesheuvel, P. M. & Porada, S. Desalination of complex multi-ionic solutions by reverse osmosis at different pH values, temperatures, and compositions. ACS Omega 6, 19946–19955 (2021).

    PubMed  PubMed Central  Google Scholar 

  176. Kimani, E. M. et al. The influence of feedwater pH on membrane charge ionization and ion rejection by reverse osmosis: an experimental and theoretical study. J. Memb. Sci. 660, 120800 (2022).

    CAS  Google Scholar 

  177. Applied Membranes Inc. Membrane Performance Factors Temperature Correction. Applied Membranes Inc. https://appliedmembranes.com/media/wysiwyg/pdf/membranes/temperature_correction_chart_for_ro_membranes.pdf (2012).

  178. DuPont Water Solutions. FilmTecTM Temperature Correction Factor Technical Manual Excerpt. Dupont https://www.dupont.com/content/dam/dupont/amer/us/en/water-solutions/public/documents/en/RO-NF-FilmTec-Temperature-Correction-Factor-Manual-Exc-45-D01658-en.pdf (2022).

  179. Jamaly, S., Darwish, N. N., Ahmed, I. & Hasan, S. W. A short review on reverse osmosis pretreatment technologies. Desalination 354, 30–38 (2014).

    CAS  Google Scholar 

  180. Henthorne, L. & Boysen, B. State-of-the-art of reverse osmosis desalination pretreatment. Desalination 356, 129–139 (2015).

    CAS  Google Scholar 

  181. Kang, G. D. et al. Study on hypochlorite degradation of aromatic polyamide reverse osmosis membrane. J. Memb. Sci. 300, 165–171 (2007).

    CAS  Google Scholar 

  182. Gohil, J. M. & Suresh, A. K. Chlorine attack on reverse osmosis membranes: mechanisms and mitigation strategies. J. Memb. Sci. 541, 108–126 (2017).

    CAS  Google Scholar 

  183. Glater, J., Hong, S. K. & Elimelech, M. The search for a chlorine-resistant reverse osmosis membrane. Desalination 95, 325–345 (1994).

    CAS  Google Scholar 

  184. Xue, J. et al. Chlorine-resistant polyester thin film composite nanofiltration membranes prepared with β-cyclodextrin. J. Memb. Sci. 584, 282–289 (2019).

    CAS  Google Scholar 

  185. Paul, M. et al. Synthesis and crosslinking of partially disulfonated poly(arylene ether sulfone) random copolymers as candidates for chlorine resistant reverse osmosis membranes. Polymer 49, 2243–2252 (2008).

    CAS  Google Scholar 

  186. Ni, L., Meng, J., Li, X. & Zhang, Y. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J. Memb. Sci. 451, 205–215 (2014).

    CAS  Google Scholar 

  187. Du, R. & Zhao, J. Properties of poly (N,N-dimethylaminoethyl methacrylate)/polysulfone positively charged composite nanofiltration membrane. J. Memb. Sci. 239, 183–188 (2004).

    CAS  Google Scholar 

  188. Hu, Y. et al. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). J. Memb. Sci. 501, 209–219 (2016).

    ADS  CAS  Google Scholar 

  189. Liu, M., Chen, Q., Wang, L., Yu, S. & Gao, C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination 367, 11–20 (2015).

    CAS  Google Scholar 

  190. Jun, B. M. et al. Applications of metal-organic framework based membranes in water purification: a review. Sep. Purif. Technol. 247, 116947 (2020).

    CAS  Google Scholar 

  191. Zhao, H. et al. Improving the performance of polyamide reverse osmosis membrane by incorporation of modified multi-walled carbon nanotubes. J. Memb. Sci. 450, 249–256 (2014).

    CAS  Google Scholar 

  192. Chae, H. R., Lee, J., Lee, C. H., Kim, I. C. & Park, P. K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Memb. Sci. 483, 128–135 (2015).

    ADS  CAS  Google Scholar 

  193. World Health Organization. Guidelines for drinking-water quality. WHO chronicle 38 (2011).

  194. Shaffer, D. L., Yip, N. Y., Gilron, J. & Elimelech, M. Seawater desalination for agriculture by integrated forward and reverse osmosis: improved product water quality for potentially less energy. J. Memb. Sci. 415–416, 1–8 (2012).

    Google Scholar 

  195. Hyung, H. & Kim, J.-H. A mechanistic study on boron rejection by sea water reverse osmosis membranes. J. Memb. Sci. 286, 269–278 (2006).

    CAS  Google Scholar 

  196. Bernstein, R., Belfer, S. & Freger, V. Toward improved boron removal in RO by membrane modification: feasibility and challenges. Environ. Sci. Technol. 45, 3613–3620 (2011).

    ADS  CAS  PubMed  Google Scholar 

  197. Tu, K. L., Nghiem, L. D. & Chivas, A. R. Boron removal by reverse osmosis membranes in seawater desalination applications. Sep. Purif. Technol. 75, 87–101 (2010).

    CAS  Google Scholar 

  198. Tang, Y. P., Luo, L., Thong, Z. & Chung, T. S. Recent advances in membrane materials and technologies for boron removal. J. Memb. Sci. 541, 434–446 (2017).

    ADS  CAS  Google Scholar 

  199. Prats, D., Chillon-Arias, M. F. & Rodriguez-Pastor, M. Analysis of the influence of pH and pressure on the elimination of boron in reverse osmosis. Desalination 128, 269–273 (2000).

    CAS  Google Scholar 

  200. Linge, K. L. et al. Formation of halogenated disinfection by-products during microfiltration and reverse osmosis treatment: implications for water recycling. Sep. Purif. Technol. 104, (2013).

  201. Fujioka, T. et al. N-nitrosamine rejection by nanofiltration and reverse osmosis membranes: the importance of membrane characteristics. Desalination 316, 67–75 (2013).

    CAS  Google Scholar 

  202. Malaeb, L. & Ayoub, G. M. Reverse osmosis technology for water treatment: state of the art review. Desalination 267, 1–8 (2011).

    CAS  Google Scholar 

  203. Creber, S. A. et al. Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes. Food Bioprod. Process. 88, 401–408 (2010).

    Google Scholar 

  204. Leterme, S. C., Le Lan, C., Hemraj, D. A. & Ellis, A. V. The impact of diatoms on the biofouling of seawater reverse osmosis membranes in a model cross-flow system. Desalination 392, 8–13 (2016).

    CAS  Google Scholar 

  205. Karkhanechi, H., Takagi, R. & Matsuyama, H. Biofouling resistance of reverse osmosis membrane modified with polydopamine. Desalination 336, 87–96 (2014).

    CAS  Google Scholar 

  206. Yu, W., Yang, Y. & Graham, N. Evaluation of ferrate as a coagulant aid/oxidant pretreatment for mitigating submerged ultrafiltration membrane fouling in drinking water treatment. Chem. Eng. J. 298, 234–242 (2016).

    CAS  Google Scholar 

  207. Cho, J., Amy, G. & Pellegrino, J. Membrane filtration of natural organic matter: initial comparison of rejection and flux decline characteristics with ultrafiltration and nanofiltration membranes. Water Res. 33, 2517–2526 (1999).

    CAS  Google Scholar 

  208. Jeong, S., Naidu, G., Vollprecht, R., Leiknes, T. O. & Vigneswaran, S. In-depth analyses of organic matters in a full-scale seawater desalination plant and an autopsy of reverse osmosis membrane. Sep. Purif. Technol. 162, 171–179 (2016).

    CAS  Google Scholar 

  209. Zhu, X. & Elimelech, M. Colloidal fouling of reverse osmosis membranes: measurements and fouling mechanisms. Environ. Sci. Technol. 31, 3654–3662 (1997).

    ADS  CAS  Google Scholar 

  210. Goh, P. S., Lau, W. J., Othman, M. H. D. & Ismail, A. F. Membrane fouling in desalination and its mitigation strategies. Desalination 425, 130–155 (2018).

    CAS  Google Scholar 

  211. Alizadeh Tabatabai, S. A., Schippers, J. C. & Kennedy, M. D. Effect of coagulation on fouling potential and removal of algal organic matter in ultrafiltration pretreatment to seawater reverse osmosis. Water Res. 59, 283–294 (2014).

    CAS  PubMed  Google Scholar 

  212. Varin, K. J., Lin, N. H. & Cohen, Y. Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. J. Memb. Sci. 446, 472–481 (2013).

    CAS  Google Scholar 

  213. Qin, J. J., Oo, M. H., Kekre, K. A. & Liberman, B. Development of novel backwash cleaning technique for reverse osmosis in reclamation of secondary effluent. J. Memb. Sci. 346, 8–14 (2010).

    CAS  Google Scholar 

  214. Guillen, G. & Hoek, E. M. V. Modeling the impacts of feed spacer geometry on reverse osmosis and nanofiltration processes. Chem. Eng. J. 149, 221–231 (2009).

    CAS  Google Scholar 

  215. Koutsou, C. P. & Karabelas, A. J. Shear stresses and mass transfer at the base of a stirred filtration cell and corresponding conditions in narrow channels with spacers. J. Memb. Sci. 399–400, 60–72 (2012).

    Google Scholar 

  216. Jee, K. Y., Shin, D. H. & Lee, Y. T. Surface modification of polyamide RO membrane for improved fouling resistance. Desalination 394, 131–137 (2016).

    CAS  Google Scholar 

  217. Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    CAS  Google Scholar 

  218. Yang, Z., Wu, C. & Tang, C. Y. Making waves: why do we need ultra-permeable nanofiltration membranes for water treatment? Water Res. X 19, 10072 (2023).

    Google Scholar 

  219. Gekas, V. & Hallström, B. Mass transfer in the membrane concentration polarization layer under turbulent cross flow: I. Critical literature review and adaptation of existing sherwood correlations to membrane operations. J. Memb. Sci. 30, 153–170 (1987).

    CAS  Google Scholar 

  220. Hoek, E. M. V., Kim, A. S. & Elimelech, M. Influence of crossflow membrane filter geometry and shear rate on colloidal fouling in reverse osmosis and nanofiltration separations. Environ. Eng. Sci. 19, 357–372 (2002).

    CAS  Google Scholar 

  221. Gao, Y., Wang, Y. N., Li, W. & Tang, C. Y. Characterization of internal and external concentration polarizations during forward osmosis processes. Desalination 338, 65–73 (2014).

    CAS  Google Scholar 

Download references

Acknowledgements

S.L. and W.L. acknowledge the US–Israel Binational Agricultural Research and Development Fund (Grant no. IS-5209-19) and the US National Science Foundation (2017998). M.E. acknowledges the Israel–US Collaborative Water-Energy Research Center via Binational Industrial Research and Development Foundation Energy Center Grant EC-15. The authors also acknowledge J. Zhang from Vanderbilt University for the assistance in creating Fig. 1 and P. M. Biesheuvel from Wetsus for proofreading the paper.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.E. and M.E.); Experimentation (W.L., J.L.L. and S.L.); Results (W.L., J.L.L., L.W., Z.W., M.E., R.E. and S.L.); Applications (W.L., M.d.C., S.A.Y. and Z.W.); Reproducibility and data deposition (L.W. and S.L.); Limitations and optimizations (W.L., L.W. and Z.W.); Outlook (R.E., M.E. and S.L.). All authors contributed to reviewing and editing the manuscript.

Corresponding authors

Correspondence to Menachem Elimelech or Shihong Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Ali Altaee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GWI, DesalData: https://www.desaldata.com/

Open membrane database: https://openmembranedatabase.org

Sorek II plant: https://ide-tech.com/en/project/sorek-b-desalination-plant/

Supplementary information

Glossary

Concentration polarization

A build-up in concentration near the membrane surface owing to convective transport of solute rejected by the membrane.

Interfacial polymerization

A polymerization reaction to form a thin film at the interface between two immiscible liquids.

Membrane permeability

A measure of how fast water can transport through the membrane under a given mass transport driving force and defined as the ratio of pure water flux over applied pressure.

Nanofiltration

A membrane-based separation process similar to reverse osmosis, but with larger membrane pores, higher water flux and lower solute rejection.

Osmotic pressure

The minimum required pressure to be applied to a solution to prevent pure water from diffusing towards the solution through a perfect semi-permeable membrane via osmosis.

Reverse osmosis

A membrane-based separation process in which a hydraulic pressure is applied to push water through a semi-permeable membrane that rejects the solutes.

Solution-diffusion

A model used to describe water and solute transport through a polyamide layer by independently dissolving into the membrane and then diffusing across the membrane. This theory has been challenged by recent studies.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Livingston, J.L., Wang, L. et al. Pressure-driven membrane desalination. Nat Rev Methods Primers 4, 10 (2024). https://doi.org/10.1038/s43586-023-00287-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-023-00287-y

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene