Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covalent organic framework membrane for efficient removal of emerging trace organic contaminants from water

Abstract

Emerging trace organic contaminants are harmful pollutants that accumulate over time and pose serious potential hazards to human health and the ecosystem. Membrane technology provides a promising and sustainable method to remove them from the water environment. However, the pore sizes of most commercial membranes are larger than the molecular size of most trace organic contaminants, making it challenging to achieve effective interception. Here,we propose a side-chain engineering strategy to regulate the pore size of covalent organic framework membranes from mesopore to micropore by introducing alkyl chains of varying lengths into their pore surfaces. The alkyl chain-appended covalent organic framework membranes show efficient interception of various organic pollutants, including citrate esters, nitropolycyclic aromatic hydrocarbons, organophosphate esters and pesticides as small as 0.35 nm, with a rejection rate greater than 99% and corresponding flux higher than 110 kg m−2 h−1 MPa−1. This work provides an avenue for effectively removing different types of organic pollutant from water resources to ensure the safety and sustainability of our water supply.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Three strategies to enhance the interception of small molecules by COF channels.
Fig. 2: Schematic diagrams for fabrication of Cn-COMs.
Fig. 3: Characteristics of the Cn-COFs and Cn-COMs.
Fig. 4: Separation performance of Cn-COMs for various pollutant aqueous solutions.
Fig. 5: Stability and performance comparison of Cn-COMs.

Similar content being viewed by others

Data availability

All data supporting the finding of this study are available within this article and its Supplementary information. The data that support the findings of this study and the raw data for all the figures have been uploaded to Figshare at https://doi.org/10.6084/m9.figshare.24418084.

References

  1. Lei, Y. et al. Rate constants and mechanisms for reactions of bromine radicals with trace organic contaminants. Environ. Sci. Technol. 55, 10502–10513 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Richardson, S. D. & Kimura, S. Y. Water analysis: emerging contaminants and current issues. Anal. Chem. 88, 546–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Scholes, R. C., King, J. F., Mitch, W. A. & Sedlak, D. L. Transformation of trace organic contaminants from reverse osmosis concentrate by open-water unit-process wetlands with and without ozone pretreatment. Environ. Sci. Technol. 54, 16176–16185 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, S. et al. Removal of trace organic contaminants in municipal wastewater by anaerobic membrane bioreactor: efficiencies, fates and impact factors. J. Water Process. 40, 101953 (2021).

    Article  Google Scholar 

  5. Huang, Y. et al. An experimental method for predicting the adsorption of trace organic contaminants in partially saturated granular activated carbon. ACS ES&T Water 1, 1168–1176 (2021).

    Article  CAS  Google Scholar 

  6. Liu, Z., Yang, X., Demeestere, K. & Van Hulle, S. Insights into a packed bubble column for removal of several ozone-persistent TrOCs by ozonation: removal kinetics, energy efficiency and elimination prediction. Sep. Purif. Technol. 275, 119170 (2021).

    Article  CAS  Google Scholar 

  7. Wang, S., Yin, Y. & Wang, J. Enhanced biodegradation of triclosan by means of gamma irradiation. Chemosphere 167, 406–414 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, Z. et al. Graphene oxide nanofiltration membranes for desalination under realistic conditions. Nat. Sustain. 4, 402–408 (2021).

    Article  Google Scholar 

  9. Zhu, T., Zhang, Y., Tao, C., Chen, W. & Cheng, H. Prediction of organic contaminant rejection by nanofiltration and reverse osmosis membranes using interpretable machine learning models. Sci. Total Environ. 857, 159348 (2023).

    Article  CAS  PubMed  Google Scholar 

  10. Guo, Y. et al. High performance nanofiltration membrane using self-doping sulfonated polyaniline. J. Membr. Sci. 652, 120441 (2022).

    Article  CAS  Google Scholar 

  11. Wang, Y., Zucker, I., Boo, C. & Elimelech, M. Removal of emerging wastewater organic contaminants by polyelectrolyte multilayer nanofiltration membranes with tailored selectivity. ACS ES&T Eng. 1, 404–414 (2021).

    Article  CAS  Google Scholar 

  12. Boo, C. et al. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environ. Sci. Technol. 52, 7279–7288 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020).

    Article  Google Scholar 

  14. Zhang, M. et al. Hierarchical-coassembly-enabled 3D-printing of homogeneous and heterogeneous covalent organic frameworks. J. Am. Chem. Soc. 141, 5154–5158 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Zhou, W., Wei, M., Zhang, X., Xu, F. & Wang, Y. Fast desalination by multilayered covalent organic framework (COF) nanosheets. ACS Appl. Mater. Inter. 11, 16847–16854 (2019).

    Article  CAS  Google Scholar 

  16. Khan, N. A. et al. Solid–vapor interface engineered covalent organic framework membranes for molecular separation. J. Am. Chem. Soc. 142, 13450–13458 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Geng, K. et al. Covalent organic frameworks: design, synthesis, and functions. Chem. Rev. 120, 8814–8933 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Fan, H., Gu, J., Meng, H., Knebel, A. & Caro, J. High-flux membranes based on the covalent organic framework COF-LZU1 for selective dye separation by nanofiltration. Angew. Chem. Int. Ed. 57, 4083–4087 (2018).

    Article  CAS  Google Scholar 

  19. Kandambeth, S. et al. Selective molecular sieving in self-standing porous covalent-organic-framework Membranes. Adv. Mater. 29, 1603945 (2017).

    Article  Google Scholar 

  20. Wang, M. et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain 5, 518–526 (2022).

    Article  Google Scholar 

  21. Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Biswal, B. P. et al. Chemically stable covalent organic framework (COF)-polybenzimidazole hybrid membranes: enhanced gas separation through pore modulation. Chem. Eur. J. 22, 4695–4699 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Segura, J. L., Mancheno, M. J. & Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem. Soc. Rev. 45, 5635–5671 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Hou, J., Zhang, H., Simon, G. P. & Wang, H. Polycrystalline advanced microporous framework membranes for efficient separation of small molecules and ions. Nat. Mater. 32, 1902009 (2020).

    CAS  Google Scholar 

  25. Fang, Q. et al. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun. 5, 4503 (2014).

    Article  PubMed  Google Scholar 

  26. Fan, H. et al. MOF-in-COF molecular sieving membrane for selective hydrogen separation. Nat. Commun. 12, 38 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, Y. et al. MOF-COF ‘alloy’ membranes for efficient propylene/propane separation. Adv. Mater. 34, 2201423 (2022).

    Article  CAS  Google Scholar 

  28. Pu, Y. et al. Growing ZIF-8 seeds on charged COF substrates toward efficient propylene–propane separation membranes. Angew. Chem. Int. Ed. 62, e202302355 (2023).

    Article  CAS  Google Scholar 

  29. Ying, Y. et al. Ultrathin two-dimensional membranes assembled by ionic covalent organic nanosheets with reduced apertures for gas separation. J. Am. Chem. Soc. 142, 4472–4480 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Yang, H. et al. Ultrathin heterostructured covalent organic framework membranes with interfacial molecular sieving capacity for fast water-selective permeation. J. Mater. Chem. A 8, 19328–19336 (2020).

    Article  CAS  Google Scholar 

  31. Yang, H. et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations. Nat. Commun. 10, 2101 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fan, H. et al. High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. J. Am. Chem. Soc. 142, 6872–6877 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Ding, S. Y. et al. Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II). J. Am. Chem. Soc. 138, 3031–3037 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Shinde, D. B. et al. Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chem. Sci. 11, 5434–5440 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nagai, A. et al. Pore surface engineering in covalent organic frameworks. Nat. Commun. 2, 536 (2011).

    Article  PubMed  Google Scholar 

  36. Hao, J. et al. Removal of pharmaceuticals and personal care products (PPCPs) from water and wastewater using novel sulfonic acid (–SO3H) functionalized covalent organic frameworks. Environ. Sci. Nano 6, 3374–3387 (2019).

    Article  CAS  Google Scholar 

  37. Segura, J. L., Royuela, S. & Mar Ramos, M. Post-synthetic modification of covalent organic frameworks. Chem. Soc. Rev. 48, 3903–3945 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Dutta, T. K. & Patra, A. Post-synthetic modification of covalent organic frameworks through in situ polymerization of aniline for enhanced capacitive energy storage. Chem. Asian J. 16, 158–164 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K. & Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 133, 11478–11481 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Artifon, W., Cesca, K., de Andrade, C. J., Ulson de Souza, A. A. & de Oliveira, D. Dyestuffs from textile industry wastewaters: trends and gaps in the use of bioflocculants. Process Biochem. 111, 181–190 (2021).

    Article  CAS  Google Scholar 

  41. Dey, K. et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films. J. Am. Chem. Soc. 139, 13083–13091 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Cheng, S., Oatley, D. L., Williams, P. M. & Wright, C. J. Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters. Water Res. 46, 33–42 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Santanu et al. Ultrafast viscous permeation of organic solvents through diamond-like carbon nanosheets. Science 335, 444–447 (2012).

    Article  Google Scholar 

  44. Marchetti, P., Butté, A. & Livingston, A. G. An improved phenomenological model for prediction of solvent permeation through ceramic NF and UF membranes. J. Membr. Sci. 415-416, 444–458 (2012).

    Article  CAS  Google Scholar 

  45. Shi, D. et al. Intercrystalline channels at subnanometer scale for precise molecular nanofiltration. J. Am. Chem. Soc. 145, 15848–15858 (2023).

    Article  CAS  PubMed  Google Scholar 

  46. Fenton, J. L., Burke, D. W., Qian, D., Cruz, M. O. & Dichtel, W. R. Polycrystalline covalent organic framework films act as adsorbents, not membranes. J. Am. Chem. Soc. 143, 1466–1473 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Rogowska, J., Cieszynska-Semenowicz, M., Ratajczyk, W. & Wolska, L. Micropollutants in treated wastewater. Ambio 49, 487–503 (2020).

    Article  PubMed  Google Scholar 

  48. Qadeer, A., Kirsten, K. L., Ajmal, Z., Jiang, X. & Zhao, X. Alternative plasticizers as emerging global environmental and health threat: another regrettable substitution? Environ. Sci. Technol. 56, 1482–1488 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Suhring, R. et al. Organophosphate esters in Canadian Arctic air: occurrence, levels and trends. Environ. Sci. Technol. 50, 7409–7415 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Lin, Y. et al. Concentrations and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in the atmosphere of North China, and the transformation from PAHs to NPAHs. Environ. Pollut. 196, 164–170 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Medical Innovation and Development Project of Lanzhou University (lzuyxcx-2022-156), CAMS Innovation Fund for Medical Sciences (CIFMS, 2019-I2M-5-074, 2021-I2M-1-026, 2021-I2M-3-001, 2022-I2M-2-002), the Natural Science Foundation of China (22171136) and the Natural Science Foundation of Jiangsu Province (BK20220079, BK20211521). G.Z. acknowledges the support of the Thousand Young Talent Plans. We thank S. Kitagawa at Kyoto University and D. Leigh at the University of Manchester for their helpful discussion on structure expression and pore flow mechanism.

Author information

Authors and Affiliations

Authors

Contributions

G.Z. and R.W. came up with ideas and design synthetic routes. T.L. synthesized the Cn-COM materials and did the characterization. T.L. and Y.Z. jointly completed evaluation of nanofiltration performance of Cn-COMs. Z.S. analysed and wrote the XRD and BET parts. G.S. analysed the nanofiltration part. M.W., B.L. and H.S. revised the manuscript. All authors have read and contributed to the manuscript.

Corresponding authors

Correspondence to Guanyong Su, Rui Wang or Gen Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Rahul Banerjee and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Discussion and Tables 1–6.

Source data

Source Data Fig. 3

Data underlying Fig. 3.

Source Data Fig. 4

Data underlying Fig. 4.

Source Data Fig. 5

Data underlying Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Zhang, Y., Shan, Z. et al. Covalent organic framework membrane for efficient removal of emerging trace organic contaminants from water. Nat Water 1, 1059–1067 (2023). https://doi.org/10.1038/s44221-023-00162-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00162-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing