Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrahigh-water-flux desalination on graphdiyne membranes

Abstract

Membrane desalination is an emerging technology that shows promise for producing freshwater from saline waters. However, most membranes are challenged by low freshwater flux, impacting the water productivity, energy efficiency and membrane usage. Here we present the submicrometre-thick and nanopore-structured graphdiyne membranes on porous Cu hollow fibres. We accomplish nearly perfect NaCl rejections (>99.9%) and ultrahigh water permeabilities reaching ~700 l m−2 h−1, which are approximately 1–3 orders of magnitude higher than those of commercial polymeric membranes, in vacuum membrane distillation of a 3.5 wt% NaCl solution. Membrane stability is demonstrated by feeding hypersaline waters, real seawater and pollutant-containing waters. The resultant interfacial and microstructural properties of the membranes combine the interfacial ion sieving effect with vapour-transport capability to enable complete salt exclusion and accelerate the water flux. Experimental and theoretical studies have revealed that interfacial transport between graphdiyne interlayers increases the water flux by orders of magnitude relative to transport through intralayer pores.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GDY membranes on porous copper hollow fibres.
Fig. 2: Fast ion separation over GDY@PCHF membranes.
Fig. 3: Desalination mechanism of the GDY membranes.

Similar content being viewed by others

Data availability

The data supporting the findings in this study are available within the Article and Supplementary Information. Source data are provided with this paper.

References

  1. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energy Environ. Sci. 11, 1177–1196 (2018).

    Article  CAS  Google Scholar 

  3. Zhang, M. et al. Engineering a nanocomposite interlayer for a novel ceramic-based forward osmosis membrane with enhanced performance. Environ. Sci. Technol. 54, 7715–7724 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Gong, D. et al. Interfacial ions sieving for ultrafast and complete desalination through 2D nanochannel defined graphene composite membranes. ACS Nano 15, 9871–9881 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Lu, X. & Elimelech, M. Fabrication of desalination membranes by interfacial polymerization: history, current efforts, and future directions. Chem. Soc. Rev. 50, 6290–6307 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Sun, C. et al. Superhydrophobic carbon nanotube network membranes for membrane distillation: high-throughput performance and transport mechanism. Environ. Sci. Technol. 56, 5775–5785 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Ghaffour, N., Missimer, T. M. & Amy, G. L. Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability. Desalination 309, 197–207 (2013).

    Article  CAS  Google Scholar 

  8. Chen, W. et al. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat. Nanotechnol. 13, 345–350 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  11. Dong, Y. et al. Stable superhydrophobic ceramic-based carbon nanotube composite desalination membranes. Nano Lett. 18, 5514–5521 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Joshi, R. K. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotechnol. 10, 459–464 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Cohen-Tanugi, D., Lin, L. C. & Grossman, J. C. Multilayer nanoporous graphene membranes for water desalination. Nano Lett. 16, 1027–1033 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Yuan, B. et al. Cross-linked graphene oxide framework membranes with robust nano-channels for enhanced sieving ability. Environ. Sci. Technol. 54, 15442–15453 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, J. et al. Self-assembly of thiourea-crosslinked graphene oxide framework membranes toward separation of small molecules. Adv. Mater. 30, e1705775 (2018).

    Article  PubMed  Google Scholar 

  18. Jia, Z. et al. Synthesis and properties of 2D carbon-graphdiyne. Acc. Chem. Res. 50, 2470–2478 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Gao, X. et al. Direct synthesis of graphdiyne nanowalls on arbitrary substrates and its application for photoelectrochemical water splitting cell. Adv. Mater. 29, 1605308 (2017).

    Article  Google Scholar 

  20. Kou, J. et al. Water permeation through single-layer graphyne membrane. J. Chem. Phys. 139, 064705 (2013).

    Article  PubMed  Google Scholar 

  21. Qiu, H., Xue, M., Shen, C., Zhang, Z. & Guo, W. Graphynes for water desalination and gas separation. Adv. Mater. 31, e1803772 (2019).

    Article  PubMed  Google Scholar 

  22. Raju, M., Govindaraju, P. B., van Duin, A. C. T. & Ihme, M. Atomistic and continuum scale modeling of functionalized graphyne membranes for water desalination. Nanoscale 10, 3969–3980 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Zhou, J. et al. Synthesis of graphdiyne nanowalls using acetylenic coupling reaction. J. Am. Chem. Soc. 137, 7596–7599 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Yasuda, H. & Tsai, J. Pore size of microporous polymer membranes. J. Appl. Polym. Sci. 18, 805–819 (1974).

    Article  CAS  Google Scholar 

  25. Li, Y., Xu, L., Liu, H. & Li, Y. Graphdiyne and graphyne: from theoretical predictions to practical construction. Chem. Soc. Rev. 43, 2572–2586 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, X. et al. Robust superhydrophobic foam: a graphdiyne-based hierarchical architecture for oil/water separation. Adv. Mater. 28, 168–173 (2016).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, S. S. et al. Superlyophilicity-facilitated synthesis reaction at the microscale: ordered graphdiyne stripe arrays. Small 13, 1602265 (2017).

  28. Kan, X. et al. Confined interfacial synthesis of highly crystalline and ultrathin graphdiyne films and their applications for N2 fixation. Chemistry 26, 7801–7807 (2020).

    Article  CAS  PubMed  Google Scholar 

  29. Bao, H. H., Wang, L., Li, C. & Luoo, J. Structural characterization and identification of graphdiyne and graphdiyne-based materials. ACS Appl. Mater. Interf. 11, 2717–2729 (2019).

    Article  CAS  Google Scholar 

  30. Zuo, Z. et al. A facile approach for graphdiyne preparation under atmosphere for an advanced battery anode. Chem. Commun. 53, 8074–8077 (2017).

    Article  CAS  Google Scholar 

  31. Lee, J., Laoui, T. & Karnik, R. Nanofluidic transport governed by the liquid/vapour interface. Nat. Nanotechnol. 9, 317–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Zou, L., Zhang, X., Gusnawan, P., Zhang, G. & Yu, J. Crosslinked PVDF based hydrophilic-hydrophobic dual-layer hollow fiber membranes for direct contact membrane distillation desalination: from the seawater to oilfield produced water. J. Membrane Sci. 619, 118802 (2021).

  33. Li, H. et al. Stable Zr-based metal-organic framework nanoporous membrane for efficient desalination of hypersaline water. Environ. Sci. Technol. 55, 14917–14927 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Zheng, L. B. et al. Preparation of PVDF-CTFE hydrophobic membranes for MD application: effect of LiCl-based mixed additives. J. Membrane Sci. 506, 71–85 (2016).

    Article  CAS  Google Scholar 

  35. Ang, E. Y. M. et al. A review on low dimensional carbon desalination and gas separation membrane designs. J. Membrane Sci. 598, 117785 (2020).

    Article  CAS  Google Scholar 

  36. Cao, Z. et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv. 4, eaau8634 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, S. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. 20, 1551–1558 (2021).

    Article  CAS  PubMed  Google Scholar 

  38. Lu, D. et al. An ultrahigh-flux nanoporous graphene membrane for sustainable seawater desalination using low-grade heat. Adv. Mater. 34, e2109718 (2022).

    Article  PubMed  Google Scholar 

  39. Si, Y. et al. Flexible superhydrophobic metal-based carbon nanotube membrane for electrochemically enhanced water treatment. Environ. Sci. Technol. 54, 9074–9082 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Sun, L. et al. Graphdiyne: a two-dimensional thermoelectric material with high figure of merit. Carbon 90, 255–259 (2015).

    Article  CAS  Google Scholar 

  41. Li, J. F., Guan, Y. S., Cheng, F. Q. & Liu, Y. Treatment of high salinity brines by direct contact membrane distillation: effect of membrane characteristics and salinity. Chemosphere 140, 143–149 (2015).

    Article  PubMed  Google Scholar 

  42. Seo, D. H. et al. Anti-fouling graphene-based membranes for effective water desalination. Nat. Commun. 9, 683 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li, X. et al. Electrospun superhydrophobic organic/inorganic composite nanofibrous membranes for membrane distillation. ACS Appl. Mater. Interf.7, 21919–21930 (2015).

    Article  CAS  Google Scholar 

  44. Straub, A. P., Yip, N. Y., Lin, S. H., Lee, J. & Elimelech, M. Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes. Nat. Energy 1, 1–6 (2016).

    Article  Google Scholar 

  45. Wang, J. & Liu, X. Forward osmosis technology for water treatment: recent advances and future perspectives. J. Clean. Prod. 280, 124354 (2021).

  46. Wang, L. et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes. Nat. Nanotechnol. 12, 509–522 (2017).

    Article  PubMed  Google Scholar 

  47. Shen, J. et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nat. Mater. 21, 1183–1190 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article  Google Scholar 

  49. Jorgensen, W. L., Maxwell, D. S. & Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996).

    Article  CAS  Google Scholar 

  50. Essmann, U. et al. Smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577–8593 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the National Natural Science Foundation of China (grant numbers 21878322, 22075309 (G.Z.), U1932123 (G.S.) and 12105166 (X.L.)), the Science and Technology Commission of Shanghai Municipality (grant numbers 19ZR1479200 and 22ZR1470100 (G.Z.)), the University of Chinese Academy of Sciences (grant number WIUCASQD2021014 (G.S.)) and the Biomaterials and Regenerative Medicine Institute Cooperative Research Project Shanghai Jiao Tong University School of Medicine (grant number 2022LHA09 (G.Z.)). We thank J. Yang (SARI) for sample characterizations, Z. Guo (ShanghaiTech) for providing real seawater and A. Goldbach (DICP) for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

G. Z. conceived and designed the project. G. S. and G.Z. conceived and designed the simulations. H. C. performed the experiments of membrane preparation, characterization, and membrane separation. D. G. prepared the schematics. X. L. and G. S. carried out the theoretical calculations. G. Z., H. C., X. L., and G. S. prepared the original draft. G. Z. and G. S. wrote the final version of manuscript. C. Z. and H. C. prepared the porous copper hollow fibres. Y. P. contributed to discussion and draft editing. Y. S. participated in project administration. D. G., G. L., P. W., J. F., and Z. L. contributed to materials characterization and long-term stability tests. All authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Guosheng Shi, Yuhan Sun or Gaofeng Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Yingchao Dong, Zhiping Lai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–6, Methods, Text and References 1–100.

Supplementary Data 1

Source data for Supplementary Figs. 3–27.

Supplementary Data 2

Source data for Supplementary Fig. 28.

Supplementary Data 3

Source data for Supplementary Fig. 29.

Supplementary Data 4

Source data for Supplementary Figs. 30–32.

Source data

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3c,e,f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Liu, X., Gong, D. et al. Ultrahigh-water-flux desalination on graphdiyne membranes. Nat Water 1, 800–807 (2023). https://doi.org/10.1038/s44221-023-00123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00123-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing