Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-independent phytoplankton degradation and detoxification of methylmercury in water

Subjects

Abstract

Phytoplankton serves as a key entry point for the trophic transfer and bioaccumulation of the neurotoxin methylmercury (MeHg) in aquatic food webs. However, it is unclear whether and how phytoplankton itself may degrade and metabolize MeHg in the dark. Here, using several strains of the freshwater alga Chlorella vulgaris, the marine diatom Chaetoceros gracilis and two cyanobacteria (or blue-green algae), we report a light-independent pathway of MeHg degradation in water by phytoplankton, rather than its associated bacteria. About 36–85% of MeHg could be degraded intracellularly to inorganic Hg(II) and/or Hg(0) via dark reactions. Endogenic reactive oxygen species, particularly singlet oxygen, were identified as the main driver of MeHg demethylation. Given the increasing incidence of algal blooms in lakes and marine systems globally, these findings underscore the potential roles of phytoplankton demethylation and detoxification of MeHg in aquatic ecosystems and call for improved modelling and assessment of MeHg bioaccumulation and environmental risks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dark degradation of MeHg by phytoplankton cells and filtrates.
Fig. 2: Hg species distributions during MeHg degradation in the dark.
Fig. 3: Demethylation by phytoplankton cell filtrates and lysates.
Fig. 4: Reactive oxygen species in phytoplankton demethylation.
Fig. 5: Phytoplankton demethylation in natural waters.

Similar content being viewed by others

Data availability

Source data are provided with this paper.

References

  1. Parks, J. M. et al. The genetic basis for bacterial mercury methylation. Science 339, 1332–1335 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Podar, M. et al. Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci. Adv. 1, e1500675 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mason, R. P., Reinfelder, J. R. & Morel, F. M. M. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 80, 915–921 (1995).

    Article  CAS  Google Scholar 

  4. Chen, C. Y. et al. A critical time for mercury science to inform global policy. Environ. Sci. Technol. 52, 9556–9561 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu, P., Zakem, E. J., Dutkiewicz, S. & Zhang, Y. Biomagnification of methylmercury in a marine plankton ecosystem. Environ. Sci. Technol. 54, 5446–5455 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, Y., Soerensen, A. L., Schartup, A. T. & Sunderland, E. M. A global model for methylmercury formation and uptake at the base of marine food webs. Glob. Biogeochem. Cycles 34, e2019GB006348 (2020).

    Article  CAS  Google Scholar 

  7. Gosnell, K. J., Dam, H. G. & Mason, R. P. Mercury and methylmercury uptake and trophic transfer from marine diatoms to copepods and field collected zooplankton. Mar. Environ. Res. 170, 105446 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Schartup, A. T. et al. A model for methylmercury uptake and trophic transfer by marine plankton. Environ. Sci. Technol. 52, 654–662 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281, 237–240 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Barkay, T. & Gu, B. Demethylation—the other side of the mercury methylation coin: a critical review. ACS Environ. Au 2, 77–97 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Black, F. J., Poulin, B. A. & Flegal, A. R. Factors controlling the abiotic photo-degradation of monomethylmercury in surface waters. Geochim. Cosmochim. Acta 84, 492–507 (2012).

    Article  CAS  Google Scholar 

  12. Jeremiason, J. D. et al. Photoreduction of Hg(II) and photodemethylation of methylmercury: the key role of thiol sites on dissolved organic matter. Environ. Sci. Process. Impacts 17, 1892–1903 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Tedetti, M. & Sempéré, R. Penetration of ultraviolet radiation in the marine environment. A review. Photochem. Photobiol. 82, 389–397 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Li, Y., Li, D., Song, B. & Li, Y. The potential of mercury methylation and demethylation by 15 species of marine microalgae. Water Res. 215, 118266 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Lu, X. et al. Anaerobic mercury methylation and demethylation by Geobacter bemidjiensis Bem. Environ. Sci. Technol. 50, 4366–4373 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Lu, X. et al. Methylmercury uptake and degradation by methanotrophs. Sci. Adv. 3, e1700041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Monperrus, M. et al. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. Mar. Chem. 107, 49–63 (2007).

    Article  CAS  Google Scholar 

  18. Whalin, L., Kim, E.-H. & Mason, R. Factors influencing the oxidation, reduction, methylation and demethylation of mercury species in coastal waters. Mar. Chem. 107, 278–294 (2007).

    Article  CAS  Google Scholar 

  19. Bravo, A. G., Le Faucheur, S., Monperrus, M., Amouroux, D. & Slaveykova, V. I. Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii. Environ. Pollut. 192, 212–215 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Sharif, A. et al. Fate of mercury species in the coastal plume of the Adour River estuary (Bay of Biscay, SW France). Sci. Total Environ. 496, 701–713 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Beauvais-Flück, R., Slaveykova, V. I. & Cosio, C. Transcriptomic and physiological responses of the green microalga Chlamydomonas reinhardtii during short-term exposure to subnanomolar methylmercury concentrations. Environ. Sci. Technol. 50, 7126–7134 (2016).

    Article  PubMed  Google Scholar 

  22. Beauvais-Flück, R., Slaveykova, V. I. & Cosio, C. Cellular toxicity pathways of inorganic and methyl mercury in the green microalga Chlamydomonas reinhardtii. Sci. Rep. 7, 8034 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kritee, K., Motta, L. C., Blum, J. D., Tsui, M. T.-K. & Reinfelder, J. R. Photomicrobial visible light-induced magnetic mass independent fractionation of mercury in a marine microalga. ACS Earth Space Chem. 2, 432–440 (2018).

    Article  CAS  Google Scholar 

  24. Lee, C.-S. & Fisher, N. S. Microbial generation of elemental mercury from dissolved methylmercury in seawater. Limnol. Oceanogr. 64, 679–693 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Cossart, T. et al. Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake. Environ. Pollut. 288, 117771 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Slaveykova, V. I., Majumdar, S., Regier, N., Li, W. & Keller, A. A. Metabolomic responses of green alga Chlamydomonas reinhardtii exposed to sublethal concentrations of inorganic and methylmercury. Environ. Sci. Technol. 55, 3876–3887 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Cossart, T. et al. Role of phytoplankton in aquatic mercury speciation and transformations. Environ. Chem. 19, 104–115 (2022).

    Article  CAS  Google Scholar 

  28. Gascón Díez, E. et al. Role of settling particles on mercury methylation in the oxic water column of freshwater systems. Environ. Sci. Technol. 50, 11672–11679 (2016).

    Article  PubMed  Google Scholar 

  29. Bouchet, S. et al. In situ photochemical transformation of Hg species and associated isotopic fractionation in the water column of high-altitude lakes from the Bolivian Altiplano. Environ. Sci. Technol. 56, 2258–2268 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Duval, B. et al. Dynamics, distribution, and transformations of mercury species from pyrenean high-altitude lakes. Environ. Res. 216, 114611 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Lee, C.-S. & Fisher, N. S. Methylmercury uptake by diverse marine phytoplankton. Limnol. Oceanogr. 61, 1626–1639 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Safi, C., Zebib, B., Merah, O., Pontalier, P.-Y. & Vaca-Garcia, C. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew. Sust. Energ. Rev. 35, 265–278 (2014).

    Article  Google Scholar 

  33. Rastogi, R. P., Madamwar, D. & Incharoensakdi, A. Bloom dynamics of cyanobacteria and their toxins: environmental health impacts and mitigation strategies. Front. Microbiol. 6, 1254 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl Acad. Sci. USA 113, E1516–E1525 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gu, B. et al. Mercury reduction and complexation by natural organic matter in anoxic environments. Proc. Natl Acad. Sci. USA 108, 1479–1483 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu, H. et al. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat. Geosci. 6, 751–754 (2013).

    Article  CAS  Google Scholar 

  37. Li, W. K. W. Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean. Nature 419, 154–157 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Mason, R. P. et al. Mercury biogeochemical cycling in the ocean and policy implications. Environ. Res. 119, 101–117 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hawkings, J. R. et al. Large subglacial source of mercury from the southwestern margin of the Greenland Ice Sheet. Nat. Geosci. 14, 496–502 (2021).

    Article  CAS  Google Scholar 

  40. Pickhardt, P. C., Folt, C. L., Chen, C. Y., Klaue, B. & Blum, J. D. Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc. Natl Acad. Sci. USA 99, 4419–4423 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Xiong, J.-Q., Kurade, M. B., Kim, J. R., Roh, H.-S. & Jeon, B.-H. Ciprofloxacin toxicity and its co-metabolic removal by a freshwater microalga Chlamydomonas mexicana. J. Hazard. Mater. 323, 212–219 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Zhu, Z. et al. Joint toxicity of microplastics with triclosan to marine microalgae Skeletonema costatum. Environ. Pollut. 246, 509–517 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, B., Chen, M., Zheng, M. & Qiu, Y. Responses of two coastal algae (Skeletonema costatum and Chlorella vulgaris) to changes in light and iron levels. J. Phycol. 56, 618–629 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Guo, Z. & Tong, Y. W. The interactions between Chlorella vulgaris and algal symbiotic bacteria under photoautotrophic and photoheterotrophic conditions. J. Appl. Phycol. 26, 1483–1492 (2014).

    Article  CAS  Google Scholar 

  45. Ramanan, R., Kim, B.-H., Cho, D.-H., Oh, H.-M. & Kim, H.-S. Algae–bacteria interactions: evolution, ecology and emerging applications. Biotechnol. Adv. 34, 14–29 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Christakis, C. A., Barkay, T. & Boyd, E. S. Expanded diversity and phylogeny of mer genes broadens mercury resistance paradigms and reveals an origin for MerA among thermophilic Archaea. Front. Microbiol. 12, 682605 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Pak, K. & Bartha, R. Products of mercury demethylation by sulfidogens and methanogens. Bull. Environ. Contam. Toxicol. 61, 690–694 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Schaefer, J. K. et al. Role of the bacterial organomercury lyase (MerB) in controlling methylmercury accumulation in mercury-contaminated natural waters. Environ. Sci. Technol. 38, 4304–4311 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Barkay, T. & Wagner‐Döbler, I. Microbial transformations of mercury: potentials, challenges, and achievements in controlling mercury toxicity in the environment. Adv. Appl. Microbiol. 57, 1–52 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Griffin, H. G., Foster, T. J., Silver, S. & Misra, T. K. Cloning and DNA sequence of the mercuric- and organomercurial-resistance determinants of plasmid pDU1358. Proc. Natl Acad. Sci. USA 84, 3112–3116 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Johs, A. et al. Structural characterization of intramolecular Hg2+ transfer between flexibly linked domains of mercuric ion reductase. J. Mol. Biol. 413, 639–656 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Lian, P. et al. X-ray structure of a Hg2+ complex of mercuric reductase (MerA) and quantum mechanical/molecular mechanical study of Hg2+ transfer between the C-terminal and buried catalytic site cysteine pairs. Biochemistry 53, 7211–7222 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Pérez-Pérez, M. E., Lemaire, S. D. & Crespo, J. L. Reactive oxygen species and autophagy in plants and algae. Plant Physiol. 160, 156–164 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Diaz, J. M. & Plummer, S. Production of extracellular reactive oxygen species by phytoplankton: past and future directions. J. Plankton Res. 40, 655–666 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, T. & Hsu-Kim, H. Photolytic degradation of methylmercury enhanced by binding to natural organic ligands. Nat. Geosci. 3, 473–476 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sheng, F. et al. A new pathway of monomethylmercury photodegradation mediated by singlet oxygen on the interface of sediment soil and water. Environ. Pollut. 248, 667–675 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Telfer, A., Dhami, S., Bishop, S. M., Phillips, D. & Barber, J. β-Carotene quenches singlet oxygen formed by isolated photosystem II reaction centers. Biochemistry 33, 14469–14474 (1994).

    Article  CAS  PubMed  Google Scholar 

  58. Han, X., Li, Y., Li, D. & Liu, C. Role of free radicals/reactive oxygen species in MeHg photodegradation: importance of utilizing appropriate scavengers. Environ. Sci. Technol. 51, 3784–3793 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Garcia-Calleja, J. et al. Determination of the intracellular complexation of inorganic and methylmercury in cyanobacterium Synechocystis sp. PCC 6803. Environ. Sci. Technol. 55, 13971–13979 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Rezayian, M., Niknam, V. & Ebrahimzadeh, H. Oxidative damage and antioxidative system in algae. Arch. Toxicol. 6, 1309–1313 (2019).

    CAS  Google Scholar 

  61. Wolfe, G. V., Strom, S. L., Holmes, J. L., Radzio, T. & Olson, M. B. Dimethylsulfoniopropionate cleavage by marine phytoplankton in response to mechanical, chemical, or dark stress. J. Phycol. 38, 948–960 (2002).

    Article  CAS  Google Scholar 

  62. Lei, P. et al. Algal organic matter drives methanogen-mediated methylmercury production in water from eutrophic shallow lakes. Environ. Sci. Technol. 55, 10811–10820 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Zhong, H. & Wang, W.-X. Controls of dissolved organic matter and chloride on mercury uptake by a marine diatom. Environ. Sci. Technol. 43, 8998–9003 (2009).

    Article  CAS  PubMed  Google Scholar 

  64. Gorski, P. R., Armstrong, D. E., Hurley, J. P. & Krabbenhoft, D. P. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environ. Pollut. 154, 116–123 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Ho, J. C., Michalak, A. M. & Pahlevan, N. Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature 574, 667–670 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Grégoire, D. S. & Poulain, A. J. A little bit of light goes a long way: the role of phototrophs on mercury cycling. Metallomics 6, 396–407 (2014).

    Article  PubMed  Google Scholar 

  67. Chen, Q., Han, H., Zhai, S. & Hu, W. Influence of solar radiation and water temperature on chlorophyll-a levels in Lake Taihu. Acta Scientiae Circumstantiae 29, 199–206 (2009).

    Google Scholar 

  68. Trumpickas, J., Shuter, B. J., Minns, C. K. & Cyr, H. Characterizing patterns of nearshore water temperature variation in the North American Great Lakes and assessing sensitivities to climate change. J. Great Lakes Res. 41, 53–64 (2015).

    Article  Google Scholar 

  69. Toffolon, M., Piccolroaz, S. & Calamita, E. On the use of averaged indicators to assess lakes’ thermal response to changes in climatic conditions. Environ. Res. Lett. 15, 034060 (2020).

    Article  Google Scholar 

  70. Zhang, T. et al. Light-up RNA aptamer signaling-CRISPR-Cas13a-based mix-and-read assays for profiling viable pathogenic bacteria. Biosens. Bioelectron. 176, 112906 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. dos Santos, H. R. M., Argolo, C. S., Argôlo-Filho, R. C. & Loguercio, L. L. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol. 19, 74 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mu, L., Zhou, Q., Zhao, Y., Liu, X. & Hu, X. Graphene oxide quantum dots stimulate indigenous bacteria to remove oil contamination. J. Hazard. Mater. 366, 694–702 (2019).

    Article  CAS  PubMed  Google Scholar 

  73. An, J. et al. Mercury uptake by Desulfovibrio desulfuricans ND132: passive or active? Environ. Sci. Technol. 53, 6264–6272 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. The UniProt Consortium. UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2018).

    Article  PubMed Central  Google Scholar 

  75. Grigoriev, I. V. et al. The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 40, D26–D32 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nordberg, H. et al. The genome portal of the Department of Energy Joint Genome Institute: 2014 updates. Nucleic Acids Res. 42, D26–D31 (2014).

    Article  CAS  PubMed  Google Scholar 

  77. Guarnieri, M. T. et al. Genome sequence of the oleaginous green alga, Chlorella vulgaris UTEX 395. Front. Bioeng. Biotechnol. 6, 37 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  PubMed  Google Scholar 

  79. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, 539 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinform. 25, 1189–1191 (2009).

    Article  CAS  Google Scholar 

  81. Burns, J. M. et al. Methods for reactive oxygen species (ROS) detection in aqueous environments. Aquat. Sci. 74, 683–734 (2012).

    Article  CAS  Google Scholar 

  82. Gui, S. et al. Bioinspired peptide for imaging Hg2+ distribution in living cells and zebrafish based on coordination-mediated supramolecular assembling. Anal. Chem. 90, 9708–9715 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Prasad, A., Sedlářová, M. & Pospíšil, P. Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms. Sci. Rep. 8, 13685 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Damas-Souza, D. M., Nunes, R. & Carvalho, H. F. An improved acridine orange staining of DNA/RNA. Acta Histochem. 121, 450–454 (2019).

    Article  CAS  PubMed  Google Scholar 

  85. Flors, C. et al. Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green. J. Exp. Bot. 57, 1725–1734 (2006).

    Article  CAS  PubMed  Google Scholar 

  86. Bolte, S. & Cordelieres, F. P. A guided tour into subcellular colocalization analysis in light microscopy. J. Microsc. 224, 213–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. French, A. P., Mills, S., Swarup, R., Bennett, M. J. & Pridmore, T. P. Colocalization of fluorescent markers in confocal microscope images of plant cells. Nat. Protoc. 3, 619–628 (2008).

    Article  CAS  PubMed  Google Scholar 

  88. Liang, X. et al. Stepwise reduction approach reveals mercury competitive binding and exchange reactions within natural organic matter and mixed organic ligands. Environ. Sci. Technol. 53, 10685–10694 (2019).

    Article  CAS  PubMed  Google Scholar 

  89. Li, F. et al. Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquat. Toxicol. 158, 1–13 (2015).

    Article  PubMed  Google Scholar 

  90. Huang, W. et al. The effects and mechanisms of polystyrene and polymethyl methacrylate with different sizes and concentrations on Gymnodinium aeruginosum. Environ. Pollut. 287, 117626 (2021).

    Article  CAS  PubMed  Google Scholar 

  91. Lin, H. Y. et al. Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. J. Fluoresc. 23, 41–47 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank X. Yin and Z. Li for technical assistance in experiments and biochemical analyses. This research was supported in part by the Office of Biological and Environmental Research within the Office of Science of the US Department of Energy (DOE), as part of the Critical Interfaces Science Focus Area project at Oak Ridge National Laboratory (ORNL), and by the National Natural Science Foundation of China (12222509 and 42107383) and the Natural Science Foundation of Jiangsu Province (BK20200322). The DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan). ORNL is managed by UT-Battelle, LLC under contract no. DE-AC05-00OR22725 with DOE.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: X.L., J. Zhao., B.G. and H.Z.; investigation and data curation: X.L., H.Z., A.J., P.L., J. Zhang, N.T., L. Zhang, L. Zhao, J. Zhao and B.G.; methodology: X.L., J. Zhao, H.Z., A.J., P.L. and B.G; support: N.Z., X.Y., L.W., E.Y.Z., Y.G., D.A.P. and E.M.P.; writing—original draft: X.L., J. Zhao, A.J. and B.G.; writing—review and editing: all authors; funding: B.G., E.M.P., J. Zhao and H.Z.

Corresponding authors

Correspondence to Jiating Zhao or Baohua Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks David Amouroux, Amina Schartup and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Methylmercury (MeHg) degradation and its degradation products [inorganic Hg(II) and Hg(0)] by Chlorella vulgaris CV395, Chaetoceros gracilis CG2658, Synechocystis sp. PCC6803, and Microcystis sp. 0824.

Methylmercury (MeHg) degradation and its degradation products [inorganic Hg(II) and Hg(0)] by Chlorella vulgaris CV395, Chaetoceros gracilis CG2658, Synechocystis sp. PCC6803, and Microcystis sp. 0824 under dark conditions. The added MeHg concentration was 25 nM, and each Hg species was normalized to the total Hg (THg) at each timepoint. Data are mean ± 1 SD (n = 4, except for zero time points with n =2).

Source data

Extended Data Fig. 2 Changes in dissolved oxygen (a), malondialdehyde (MDA) (b) and cell morphology (c) of Chlorella vulgaris (CV2338, 1×105 cells/mL) during a 5-day incubation period with MeHg (0.05 nM).

For panel (B), CV2338 cells were collected by centrifugation at 4000 rpm and 4 °C for 10 min. Cells were homogenized in 4 mL of PBS (pH 7.8, 4 °C) by an ultrasonic cell disruptor in an ice bath for 5 min. After centrifugation at 4000 rpm for 10 min at 4 °C, the supernatant was used to evaluate the MDA content, as previously described89,90. Data in (a) and (b) are mean ± 1 SD (n = 3).

Source data

Extended Data Fig. 3 Methylmercury (MeHg) degradation under either 24-h dark or 12-h Light+12-h Dark conditions by phytoplankton Chlorella vulgaris CV2338.

Methylmercury (MeHg) degradation under either 24-h dark or 12-h Light + 12-h Dark conditions by phytoplankton Chlorella vulgaris CV2338 at the MeHg concentration of 0.05 nM and CV concentration of 1×105 cells mL−1. Different letters (a and b) denote significant differences among different treatments (one-way ANOVA, p < 0.05). Data are mean ± 1 SD (n = 3).

Source data

Extended Data Fig. 4 (A) Gel electrophoresis analyses of 16S rDNA and (B) PCR-amplified 16S rDNA extracted from Chlorella vulgaris 2338 cell suspensions. (C, D) Scanning electron microscopic (SEM) images of CV2338 cells used in demethylation assays.

(A) Gel electrophoresis analyses of 16S rDNA and (B) PCR-amplified 16S rDNA extracted from Chlorella vulgaris 2338 cell suspensions. (C, D) Scanning electron microscopic (SEM) images of CV2338 cells used in demethylation assays in Figs. 1c, 2b, 3c, d, 5c, d. No visible bands or bacterial contamination were observed in these samples.

Extended Data Fig. 5 Multiple sequence alignment and phylogeny of known and putative flavoprotein oxidoreductase genes.

The sequences of four mercuric reductase (MerA) genes from canonical mer operon variants were aligned with homologs identified in the phytoplankton strains investigated in this study. Residues known to be important for catalysis in mercuric reductase are indicated by red arrows and boxes. The N-terminal sequence region corresponding to the Hg(II)-metallochaperone domain NmerA is shaded in light blue. The level of sequence conservation within the alignment is indicated (darker = higher conservation).

Source data

Extended Data Fig. 6 Evaluation of reactive oxygen species (ROS), including singlet oxygen (1O2), superoxide (O2·−), and hydroxyl (·OH) radicals, on dark degradation of methylmercury (MeHg, 0.05 nM) in the cell lysate of Chlorella vulgaris CV2338.

Evaluation of reactive oxygen species (ROS), including singlet oxygen (1O2), superoxide (O2·−), and hydroxyl (·OH) radicals, on dark degradation of methylmercury (MeHg, 0.05 nM) in the cell lysate of Chlorella vulgaris CV2338 with or without added ROS scavengers. The reaction time was set at 1 h. β-carotene and 2.5-dimethylfuran are used to scavenge 1O. Superoxide dismutase (SOD) is used to scavenge O2·−. Ethyl alcohol is used to scavenge ·OH58. Letters (a and b) denote significant differences among different treatments (one-way ANOVA, p < 0.05). Data are mean ± 1 SD (n = 3 or 4).

Source data

Extended Data Fig. 7 Fluorescence intensity of singlet oxygen signal in Chlorella vulgaris CV2338 cells.

CV2338 cells cultured under various environmental conditions (for example, light/dark) were washed three times with PBS solution and resuspended in PBS solution. PBS solutions without any CV2338 cells were set as blank. Cell suspensions (at approximately 1.5×108 cells mL−1) were reacted with the singlet oxygen fluorescent probe Singlet Oxygen Sensor Green (SOSG) for 30 min and then observed under a confocal laser scanning microscope (Zeiss LSM880 with Airyscan)83,85. Data are mean ± 1 SD (n = 3 or 5).

Source data

Extended Data Fig. 8 Fluorescence signal of singlet oxygen in Chlorella vulgaris CV2338 cell lysates upon ultrasonication and incubation.

CV lysates were reacted with the singlet oxygen fluorescent probe Singlet Oxygen Sensor Green (SOSG) for 30 min83,85. Fluorescence intensities were measured using previously established methods91, with an excitation wavelength of 488 nm and an emission wavelength of 530 nm. Data are mean ± 1 SD (n = 4). Letters (a, b, or c) denote significant differences among different treatments (one-way ANOVA, p < 0.05).

Source data

Extended Data Fig. 9 Methylmercury (MeHg) degradation with added Chlorella vulgaris CV2338 cells in filter-sterilized through 0.2-µm syringe filters or unfiltered Yangshan (YS) lake water-2.

Methylmercury (MeHg) degradation with added Chlorella vulgaris CV2338 cells in filter-sterilized through 0.2-µm syringe filters or unfiltered Yangshan (YS) lake water-2 (sampled on November 2022). Experiments performed at low concentrations of MeHg (0.05 nM) and CV2338 cells (1×105 cells mL−1). Data are mean ± 1 SD (n = 3).

Source data

Extended Data Table 1 Estimated pseudo-first order rate constants (k) for methylmercury (MeHg) degradation by phytoplankton

Supplementary information

Supplementary Information

Supplementary Tables 1–5 and Figs. 1–4.

Supplementary Data

Source data for Supplementary Figs. 1–4.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 5

Genome source data.

Source Data Extended Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 7

Statistical source data.

Source Data Extended Data Fig. 8

Statistical source data.

Source Data Extended Data Fig. 9

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Zhong, H., Johs, A. et al. Light-independent phytoplankton degradation and detoxification of methylmercury in water. Nat Water 1, 705–715 (2023). https://doi.org/10.1038/s44221-023-00117-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00117-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing