Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Biofilm inhibition on surfaces by ultraviolet light side-emitted from optical fibres

Abstract

Bacterial biofilms are problematic wherever water contacts with surfaces. Although germicidal ultraviolet (UV)-C irradiation effectively inactivates microorganisms in flowing water, controlling surface biofilms is challenging due to light delivery limitations within enclosed and flowing water systems. Here, to overcome this, we developed a novel method using UV-C light-emitting diodes connected to side-emitting optical fibres (SEOFs) placed directly on metal surfaces. Targeting mixed-bacterial biofilms from the International Space Station where biofilms threaten critical water systems for astronauts, we successfully inhibited biofilm growth by delivering UV-C light at 265 or 275 nm with an irradiance of >10 µW cm2 via SEOFs. In contrast, UV-A or UV-B at the same irradiance did not prevent biofilm growth. Energy-efficient intermittent UV-C duty-cycling experiments demonstrated that 10 min of irradiation followed by 50 min of dark time achieved equivalent results to continuous light exposure. Our research highlights the potential of SEOF technologies emitting UV-C light for effectively combating undesired biofilms in water systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Side emission of UV light from SEOFs.
Fig. 2: Influence of UV wavelength on biofilm growth.
Fig. 3: Intermittent irradiation mitigates biofilm growth.
Fig. 4: The UV-C threshold for biofilm inhibition.
Fig. 5: Relationships between biofilm growth rate and UV wavelength, irradiance and fluence.

Similar content being viewed by others

Data availability

All data are presented in the article and its supplementary information. Source data are provided with this paper.

References

  1. Costerton, J. W. et al. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987).

    CAS  PubMed  Google Scholar 

  2. Laspidou, C. S. & Rittmann, B. E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass. Water Res. 36, 2711–2720 (2002).

    CAS  PubMed  Google Scholar 

  3. Flemming, H.-C. et al. Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. npj Biofilms Microbiomes 7, 10 (2021).

    PubMed  PubMed Central  Google Scholar 

  4. Yao, Y. & Habimana, O. Biofilm research within irrigation water distribution systems: trends, knowledge gaps, and future perspectives. Sci. Total Environ. 673, 254–265 (2019).

    CAS  PubMed  Google Scholar 

  5. Falkinham Joseph, O., Hilborn Elizabeth, D., Arduino Matthew, J., Pruden, A. & Edwards Marc, A. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ. Health Perspect. 123, 749–758 (2015).

    PubMed  PubMed Central  Google Scholar 

  6. McLean, R. J. C., Cassanto, J. M., Barnes, M. B. & Koo, J. Bacterial biofilm formation under microgravity conditions. FEMS Microbiol. Lett. 195, 115–119 (2001).

    CAS  PubMed  Google Scholar 

  7. Kim, W. et al. Spaceflight promotes biofilm formation by Pseudomonas aeruginosa. PLoS ONE 8, e62437 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zea, L. et al. Design of a spaceflight biofilm experiment. Acta Astronaut. 148, 294–300 (2018).

    PubMed  PubMed Central  Google Scholar 

  9. Yang, J. et al. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. npj Biofilms Microbiomes 7, 70 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Adam, N. et al. Update on feasibility of UV LEDs in a spacecraft wastewater tank application. In 2020 International Conference on Environmental Systems (ICES, 2020).

  11. Petala, M., Tsiridis, V., Darakas, E. & Kostoglou, M. Longevity aspects of potable water disinfected by ionic silver: Kinetic experiments and modeling. Water 12, 258 (2020).

    CAS  Google Scholar 

  12. Smith, S. M. et al. Benefits for bone from resistance exercise and nutrition in long‐duration spaceflight: evidence from biochemistry and densitometry. J. Bone Miner. Res. 27, 1896–1906 (2012).

    CAS  PubMed  Google Scholar 

  13. Meyer John, A., Seidel Chad, J. & Summers, R. S. Evaluation of population-weighted risk reduction for several disinfection by-product control strategies. J. Environ. Eng. 146, 04019131 (2020).

    Google Scholar 

  14. Petala, M. et al. Silver deposition on wetted materials used in the potable water system of manned spacecrafts. In 46th International Conference on Environmental Systems (ICES, 2016).

  15. Thompson, A. F. et al. Characterizing species interactions that contribute to biofilm formation in a multispecies model of a potable water bacterial community. Microbiology 166, 34–43 (2020).

    CAS  PubMed  Google Scholar 

  16. Sobisch, L.-Y. et al. Biofilm forming antibiotic resistant Gram-positive pathogens isolated from surfaces on the international space station. Front. Microbiol. 10, 543 (2019).

    PubMed  PubMed Central  Google Scholar 

  17. Yang, J. et al. in Methods in Microbiology Vol. 45 (eds Gurtler, V. & Trevors, J. T.) 3–26 (Academic Press, 2018).

  18. Beck, S. E. et al. Comparison of UV-induced inactivation and RNA damage in MS2 phage across the germicidal UV spectrum. Appl. Environ. Microbiol. 82, 1468–1474 (2016).

    CAS  PubMed Central  Google Scholar 

  19. Beck, S. E., Wright, H. B., Hargy, T. M., Larason, T. C. & Linden, K. G. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems. Water Res. 70, 27–37 (2015).

    CAS  PubMed  Google Scholar 

  20. Poepping, C., Beck, S. E., Wright, H. & Linden, K. G. Evaluation of DNA damage reversal during medium-pressure UV disinfection. Water Res. 56, 181–189 (2014).

    CAS  PubMed  Google Scholar 

  21. Dotson, A. O., Rodriguez, C. E. & Linden, K. G. UV disinfection implementation status in US water treatment plants. J. Am. Water Works Assn. 104, 77–78 (2012).

    CAS  Google Scholar 

  22. Beck, S. E., Hull, N. M., Poepping, C. & Linden, K. G. Wavelength-dependent damage to adenoviral proteins across the germicidal UV spectrum. Environ. Sci. Technol. 52, 223–229 (2018).

    CAS  PubMed  Google Scholar 

  23. Beck, S. E. et al. Wavelength dependent UV inactivation and DNA damage of adenovirus as measured by cell culture infectivity and long range quantitative PCR. Environ. Sci. Technol. 48, 591–598 (2014).

    CAS  PubMed  Google Scholar 

  24. Jones, D. L. & Baxter, B. K. DNA repair and photoprotection: mechanisms of overcoming environmental ultraviolet radiation exposure in halophilic archaea. Front. Microbiol. 8, 1882 (2017).

    PubMed  PubMed Central  Google Scholar 

  25. NASA Technology Roadmaps TA 10: Nanotechnology (NASA, 2015).

  26. Linden, K. G., Hull, N. & Speight, V. Thinking outside the treatment plant: UV for water distribution system disinfection. Acc. Chem. Res. 52, 1226–1233 (2019).

    CAS  PubMed  Google Scholar 

  27. Sholtes, K. A. et al. Comparison of ultraviolet light-emitting diodes and low-pressure mercury-arc lamps for disinfection of water. Environ. Technol. 37, 2183–2188 (2016).

    CAS  PubMed  Google Scholar 

  28. Loeb, S. K. et al. The technology horizon for photocatalytic water treatment: sunrise or sunset. Environ. Sci. Technol. 53, 2937–2947 (2019).

    CAS  PubMed  Google Scholar 

  29. Chen, J., Loeb, S. & Kim, J. H. LED revolution: fundamentals and prospects for UV disinfection applications. Environ. Sci. Water Res. Technol. 3, 188–202 (2017).

    CAS  Google Scholar 

  30. Ma, B. et al. Inactivation of biofilm-bound bacterial cells using irradiation across UVC wavelengths. Water Res. 217, 118379–118379 (2022).

    CAS  PubMed  Google Scholar 

  31. Torkzadeh, H., Zodrow, K. R., Bridges, W. C. & Cates, E. L. Quantification and modeling of the response of surface biofilm growth to continuous low intensity UVC irradiation. Water Res. 193, 116895 (2021).

    CAS  PubMed  Google Scholar 

  32. Rittmann, B. E. & McCarty, P. L. Environmental Biotechnology: Principles and Applications (McGraw-Hill Education, 2001).

  33. Ciofu, O., Moser, C., Jensen, P. Ø. & Høiby, N. J. N. R. M. Tolerance and resistance of microbial biofilms. Nat. Rev. Microbiol. 20, 621–635 (2022).

    CAS  PubMed  Google Scholar 

  34. Bak, J., Ladefoged, S. D., Tvede, M., Begovic, T. & Gregersen, A. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes. Biofouling 26, 31–38 (2010).

    CAS  PubMed  Google Scholar 

  35. Friedman, L., Harif, T., Herzberg, M. & Mamane, H. Mitigation of biofilm colonization on various surfaces in a model water flow system by use of UV treatment. Water Air Soil Pollut. 227, 43 (2016).

    Google Scholar 

  36. Kolappan, A. & Satheesh, S. Efficacy of UV treatment in the management of bacterial adhesion on hard surfaces. Polish J. Microbiol. 60, 119–123 (2011).

    CAS  Google Scholar 

  37. Lakretz, A., Ron, E. Z. & Mamane, H. Biofouling control in water by various UVC wavelengths and doses. Biofouling 26, 257–267 (2010).

    CAS  PubMed  Google Scholar 

  38. Song, Y., Ling, L., Westerhoff, P. & Shang, C. Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs. Nat. Commun. 12, 4101 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ling, L. et al. Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation. Environ. Sci. Technol. 51, 13319–13326 (2017).

    CAS  PubMed  Google Scholar 

  40. Lanzarini-Lopes, M. et al. Nanoparticle and transparent polymer coatings enable UV-C side-emission optical fibers for inactivation of Escherichia coli in water. Environ. Sci.Technol. 53, 10880–10887 (2019).

    CAS  PubMed  Google Scholar 

  41. Lanzarini-Lopes, M., Zhao, Z., Perreault, F., Garcia-Segura, S. & Westerhoff, P. Germicidal glowsticks: side-emitting optical fibers inhibit Pseudomonas aeruginosa and Escherichia coli on surfaces. Water Res. 184, 116191 (2020).

    CAS  PubMed  Google Scholar 

  42. van Tongeren, S. P., Roest, H. I., Degener, J. E. & Harmsen, H. J. Bacillus anthracis-like bacteria and other B. cereus group members in a microbial community within the International Space Station: a challenge for rapid and easy molecular detection of virulent B. anthracis. PLoS ONE 9, e98871 (2014).

    PubMed  PubMed Central  Google Scholar 

  43. Rho, H. et al. Inhibition of biofouling on reverse osmosis membrane surfaces by germicidal ultraviolet light side-emitting optical fibers. Water Res. 224, 119094 (2022).

    CAS  PubMed  Google Scholar 

  44. Pezzoni, M., Pizarro, R. A. & Costa, C. S. Exposure to low doses of UVA increases biofilm formation in Pseudomonas aeruginosa. Biofouling 34, 673–684 (2018).

    CAS  PubMed  Google Scholar 

  45. Boks, N. P., Busscher, H. J., van der Mei, H. C. & Norde, W. Bond-strengthening in staphylococcal adhesion to hydrophilic and hydrophobic surfaces using atomic force microscopy. Langmuir 24, 12990–12994 (2008).

    CAS  PubMed  Google Scholar 

  46. Boks, N. P., Kaper, H. J., Norde, W., Busscher, H. J. & van der Mei, H. C. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata. Colloids Surf. B 67, 276–278 (2008).

    CAS  Google Scholar 

  47. Renner, L. D. & Weibel, D. B. Physicochemical regulation of biofilm formation. MRS Bull. 36, 347–355 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tuson, H. H. & Weibel, D. B. Bacteria–surface interactions. Soft Matter 9, 4368–4380 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhao, Z. et al. Evanescent wave interactions with nanoparticles on optical fiber modulate side emission of germicidal ultraviolet light. Environ. Sci. Nano 8, 2441–2452 (2021).

    CAS  Google Scholar 

  50. Richard, R., Hamilton, K. A., Westerhoff, P. & Boyer, T. H. Tracking copper, chlorine, and occupancy in a new, multi-story, institutional green building. Environ. Sci. Water Res. Technol. 6, 1672–1168 (2020).

    CAS  Google Scholar 

  51. Muirhead, D. L., Button-Denby, A., Smyth, C. M., Nelson, J. & Callahan, M. R. Chemistry of ionic silver and implications for design of potable water systems. In 2020 International Conference on Environmental Systems (ICES, 2020).

  52. Inurria, A. et al. Polyamide thin-film nanocomposite membranes with graphene oxide nanosheets: balancing membrane performance and fouling propensity. Desalination 451, 139–147 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially funded by the National Science Foundation Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (EEC-1449500) and NASA (80NSSC19C0564). We acknowledge the Eyring Materials Center at Arizona State University supported in part by the National Science Foundation (ECCS-1542160). L. Passantino provided technical editing.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and P.W. conceived the study and designed the experiments. F.P. oversaw culturing and guided biological characterization. Z.Z., H.R. and N.S. carried out experiments and associated analytics. Z.Z. and N.S. analysed the data. Z.Z. and P.W. wrote the paper. L.L. and B.R. reviewed data analysis and edited the paper. All authors provided critical feedback and helped shape the research, analysis and paper. P.W. supervised the project.

Corresponding author

Correspondence to Paul Westerhoff.

Ethics declarations

Competing interests

P.W., Z.Z. and N.S. declare the following competing interests: P.W., Z.Z. and N.S. are authors on a patent application for side-emitting optical fibres; P.W. is co-owner of a company (H2Optic Insights LLC) aiming to commercialize the side-emitting optical fibre technology. The other authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Karl Linden and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Table 1 and Text 1.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Rho, H., Shapiro, N. et al. Biofilm inhibition on surfaces by ultraviolet light side-emitted from optical fibres. Nat Water 1, 649–657 (2023). https://doi.org/10.1038/s44221-023-00111-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00111-7

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research