Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advanced redox processes for sustainable water treatment

Abstract

Oxidation and reduction reactions govern a wide range of biotic and abiotic processes. Among these are advanced oxidation processes (AOPs) and advanced reduction processes (ARPs) that have been developed to remove contaminants and pathogens from water. While these AOPs and ARPs can be very effective, they do not take full advantage of the synergy between oxidation and reduction. In this Review we summarize the chemistry of state-of-the-art UV-based AOPs and ARPs and compare them with a novel alternative process that involves UV activation of low-molecular-weight diketones. Contaminant removal by this process involves a synergistic combination of oxidation and reduction, the benefits of which could lead to a shift in water treatment technologies from discrete AOPs and ARPs to combined oxidation–reduction processes. Beyond applications for water treatment, the proposed advanced oxidation–reduction processes may also be helpful for the design and application of electron transfer in a range of other fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development and research status of oxidation water treatment technology.
Fig. 2: The evolution of UV-based AOPs and ARPs.
Fig. 3: Reported EE/O values of UV-based AOPs and ARPs.
Fig. 4: The effectiveness of AcAc in the photochemical conversion of pollutants.
Fig. 5: The photochemistry and photophysics of LDKs.
Fig. 6: Structure-activity relationship in UV/LDKs.
Fig. 7: Applicability of UV/LDKs.

Similar content being viewed by others

References

  1. Larsen, T., Hoffmann, S., Lüthi, C., Truffer, B. & Maurer, M. Emerging solutions to the water challenges of an urbanizing world. Science 352, 928–933 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Antonopoulou, M., Evgenidou, E., Lambropoulou, D. & Konstantinou, I. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media. Water Res. 53, 215–234 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018). This paper addresses the challenges of oxidative abatement of organic micropollutants in water treatment, emphasizing the questions that need to be considered, and proposes the use of multidisciplinary knowledge-based systems to assess the benefits of oxidation processes.

    Article  Google Scholar 

  5. Marron, E. L., Mitch, W. A., von Gunten, U. & Sedlak, D. L. A tale of two treatments: the multiple barrier approach to removing chemical contaminants during potable water reuse. Acc. Chem. Res. 52, 615–622 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lim, S., Shi, J. L., von Gunten, U. & McCurry, D. L. Ozonation of organic compounds in water and wastewater: a critical review. Water Res. 213, 118053–118085 (2022).

    Article  CAS  PubMed  Google Scholar 

  7. Guo, K. H., Wu, Z. H., Chen, C. Y. & Fang, J. Y. UV/chlorine process: an efficient advanced oxidation process with multiple radicals and functions in water treatment. Acc. Chem. Res. 55, 286–297 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Ao, X. W. et al. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review. Water Res. 188, 116479–116501 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Miklos, D. B. et al. Evaluation of advanced oxidation processes for water and wastewater treatment–a critical review. Water Res. 139, 118–131 (2018). This paper provides an overview of established and emerging AOPs, compares their energy efficiency based on electrical energy per order values, and highlights the influence of operational conditions on the electrical energy per order, offering recommendations for the use and upscaling of AOPs.

    Article  CAS  PubMed  Google Scholar 

  10. Chu, C. H., Ryberg, E. C., Loeb, S. K., Suh, M. J. & Kim, J. H. Water disinfection in rural areas demands unconventional solar technologies. Acc. Chem. Res. 52, 1187–1195 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Parvulescu, V. I., Epron, F., Garcia, H. & Granger, P. Recent progress and prospects in catalytic water treatment. Chem. Rev. 122, 2981–3121 (2021).

    Article  PubMed  Google Scholar 

  12. Marin, M. L., Santos-Juanes, L., Arques, A., Amat, A. M. & Miranda, M. A. Organic photocatalysts for the oxidation of pollutants and model compounds. Chem. Rev. 112, 1710–1750 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Shang, Y. N., Xu, X., Gao, B. Y., Wang, S. B. & Duan, X. G. Single-atom catalysis in advanced oxidation processes for environmental remediation. Chem. Soc. Rev. 50, 5281–5322 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. J. et al. Distinguishing homogeneous advanced oxidation processes in bulk water from heterogeneous surface reactions in organic oxidation. Proc. Natl Acad. Sci. USA 120, e2302407120 (2023). This paper provides a fundamental understanding of catalytic organic oxidation processes at the solid–water interface, revealing the prevalence of radical-based AOPs in bulk water and differing reaction pathways on solid catalyst surfaces, which can guide the design of heterogeneous nanocatalysts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Escher, B. I. & Fenner, K. Recent advances in environmental risk assessment of transformation products. Environ. Sci. Technol. 45, 3835–3847 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Prasse, C., Ford, B., Nomura, D. K. & Sedlak, D. L. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc. Natl Acad. Sci. USA 115, 2311–2316 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang, Y. Y. et al. Reactive nitrogen species mediated inactivation of pathogenic microorganisms during UVA photolysis of nitrite at surface water levels. Environ. Sci. Technol. 56, 12542–12552 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Lei, Y., Lei, X., Westerhoff, P., Zhang, X. R. & Yang, X. Reactivity of chlorine radicals (Cl and Cl2) with dissolved organic matter and the formation of chlorinated byproducts. Environ. Sci. Technol. 55, 689–699 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, T. C. et al. Unexpected role of nitrite in promoting transformation of sulfonamide antibiotics by peracetic acid: reactive nitrogen species contribution and harmful disinfection byproduct formation potential. Environ. Sci. Technol. 56, 1300–1309 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Koubek, E. Oxidation of refractory organics in aqueous waste streams by hydrogen peroxide and ultraviolet light. US patent 4,012,321 (1977).

  21. Glaze, W. H., Kang, J. W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9, 335–352 (1987).

    Article  CAS  Google Scholar 

  22. Patel, M. et al. Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods. Chem. Rev. 119, 3510–3673 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Yang, W. B., Zhou, H. D. & Cicek, N. Treatment of organic micropollutants in water and wastewater by UV-based processes: a literature review. Crit. Rev. Environ. Sci. Technol. 44, 1443–1476 (2014).

    Article  CAS  Google Scholar 

  24. Yang, J. L., Zhu, M. S. & Dionysiou, D. D. What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res. 189, 116627–116641 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Baxendale, J. H. & Wilson, J. A. The photolysis of hydrogen peroxide at high light intensities. Trans. Faraday Soc. 53, 344–356 (1957).

    Article  CAS  Google Scholar 

  26. Guan, Y. H., Ma, J., Li, X. C., Fang, J. Y. & Chen, L. W. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environ. Sci. Technol. 45, 9308–9314 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Comninellis, C. et al. Advanced oxidation processes for water treatment: advances and trends for R&D. J. Chem. Technol. Biotechnol. 83, 769–776 (2008).

    Article  CAS  Google Scholar 

  28. Oller, I., Malato, S. & Sánchez-Pérez, J. Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Sci. Total Environ. 409, 4141–4166 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Bolton, J. R., Bircher, K. G., Tumas, W. & Tolman, C. A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric-and solar-driven systems. Pure Appl. Chem. 73, 627–637 (2001).

    Article  CAS  Google Scholar 

  30. Lin, C. C., Smith, F. R., Ichikawa, N., Baba, T. & Itow, M. Decomposition of hydrogen peroxide in aqueous solutions at elevated temperatures. Int. J. Chem. Kinet. 23, 971–987 (1991).

    Article  CAS  Google Scholar 

  31. Lu, H., Wang, X. Y., Li, X. Q. & Zhang, X. Y. Study on the disinfection efficiency of the combined process of ultraviolet and sodium hypochlorite on the secondary effluent of the sewage treatment plant. Processes 10, 1622–1639 (2022).

    Article  CAS  Google Scholar 

  32. Hubbs, S. A., Amundsen, D. & Olthius, P. Use of chlorine dioxide, chloramines, and short‐term free chlorination as alternative disinfectants. J. AWWA 73, 97–101 (1981).

    Article  CAS  Google Scholar 

  33. Roberson, J. A. What’s next after 40 years of drinking water regulations? Environ. Sci. Technol. 45, 154–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Yu, Y. C. et al. Microbial cleavage of C–F bonds in two C6 per- and polyfluorinated compounds via reductive defluorination. Environ. Sci. Technol. 54, 14393–14402 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Xu, G. F. et al. Dehalogenation of polybrominated diphenyl ethers and polychlorinated biphenyls catalyzed by a reductive dehalogenase in Dehalococcoides mccartyi strain MB. Environ. Sci. Technol. 56, 4039–4049 (2022).

    Article  PubMed  Google Scholar 

  36. Bäckström, H. The chain-reaction theory of negative catalysis1. J. Am. Chem. Soc. 49, 1460–1472 (1927).

    Article  Google Scholar 

  37. Gehringer, P. & Eschweiler, H. Ozone/electron beam process for water treatment: design, limitations and economic considerations. Ozone Sci. Eng. 21, 523–538 (1999).

    Article  CAS  Google Scholar 

  38. Yoon, S. H., Abdel-Wahab, A. & Batchelor, B. Advanced reduction processes for hazardous waste treatment. Qatar Found. Annu. Res. Forum Proc. 1, EVP16 (2011).

    Google Scholar 

  39. Vellanki, B. P., Batchelor, B. & Abdel-Wahab, A. Advanced reduction processes: a new class of treatment processes. Environ. Eng. Sci. 30, 264–271 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao, Y. M. et al. Hydrated electron based photochemical processes for water treatment. Water Res. 225, 119212–119227 (2022). This review summarizes the optimal process conditions, reduction mechanisms and possible by-products of UV-based ARPs.

    Article  CAS  PubMed  Google Scholar 

  41. Gu, Y. R., Liu, T. Z., Zhang, Q. & Dong, W. Y. Efficient decomposition of perfluorooctanoic acid by a high photon flux UV/sulfite process: kinetics and associated toxicity. Chem. Eng. J. 326, 1125–1133 (2017).

    Article  CAS  Google Scholar 

  42. Yang, L. et al. UV/SO32− based advanced reduction processes of aqueous contaminants: current status and prospects. Chem. Eng. J. 397, 125412–125421 (2020).

    Article  CAS  Google Scholar 

  43. Brandt, C. & van Eldik, R. Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms. Chem. Rev. 95, 119–190 (1995).

    Article  CAS  Google Scholar 

  44. Vellanki, B. P. & Batchelor, B. Perchlorate reduction by the sulfite/ultraviolet light advanced reduction process. J. Hazard. Mater. 262, 348–356 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Fischer, M. & Warneck, P. Photodecomposition and photooxidation of hydrogen sulfite in aqueous solution. J. Phys. Chem. 100, 15111–15117 (1996).

    Article  CAS  Google Scholar 

  46. Lu, L. et al. Wastewater treatment for carbon capture and utilization. Nat. Sustain. 1, 750–758 (2018).

    Article  Google Scholar 

  47. Kou, J. H. et al. Selectivity enhancement in heterogeneous photocatalytic transformations. Chem. Rev. 117, 1445–1514 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Xiao, J. D. et al. Visible-light photocatalytic ozonation using graphitic C3N4 catalysts: a hydroxyl radical manufacturer for wastewater treatment. Acc. Chem. Res. 53, 1024–1033 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Tian, H. T., Gao, J., Li, H., Boyd, S. A. & Gu, C. Complete defluorination of perfluorinated compounds by hydrated electrons generated from 3-indole-acetic-acid in organomodified montmorillonite. Sci Rep. 6, 1–9 (2016).

    Article  Google Scholar 

  50. Sun, Z. Y. et al. UV/nitrilotriacetic acid process as a novel strategy for efficient photoreductive degradation of perfluorooctanesulfonate. Environ. Sci. Technol. 52, 2953–2962 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Chen, G. D., Hanukovich, S., Chebeir, M., Christopher, P. & Liu, H. Z. Nitrate removal via a formate radical-induced photochemical process. Environ. Sci. Technol. 53, 316–324 (2018).

    Article  PubMed  Google Scholar 

  52. Kugler, A. et al. Reductive defluorination of perfluorooctanesulfonic acid (PFOS) by hydrated electrons generated upon UV irradiation of 3-indole-acetic-acid in 12-aminolauric-modified montmorillonite. Water Res. 200, 117221–117229 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Kong, L. H., Zhao, J. M., Hu, X. Y., Zhu, F. & Peng, X. J. Reductive removal and recovery of As(V) and As(III) from strongly acidic wastewater by a UV/formic acid process. Environ. Sci. Technol. 56, 9732–9743 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. Wang, M. S., Liu, X. T., Pan, B. C. & Zhang, S. J. Photodegradation of Acid Orange 7 in a UV/acetylacetone process. Chemosphere 93, 2877–2882 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, S. J. et al. Diketone-mediated photochemical processes for target-selective degradation of dye pollutants. Environ. Sci. Technol. Lett. 1, 167–171 (2014). This article proposed UV/diketones as a new type of AOP for water treatment.

    Article  CAS  Google Scholar 

  56. Liu, X. T., Song, X. J., Zhang, S. J., Wang, M. S. & Pan, B. C. Non-hydroxyl radical mediated photochemical processes for dye degradation. Phys. Chem. Chem. Phys. 16, 7571–7577 (2014).

    Article  CAS  PubMed  Google Scholar 

  57. Song, X. J., Wu, B. D. & Zhang, S. J. Decoloration of alizarin red (an anthraquinone dye) with the UV/acetylacetone process. Acta Chim. Sinica 72, 461–466 (2014).

    Article  CAS  Google Scholar 

  58. Wu, B. D., Zhang, S. J., Li, X. C., Liu, X. T. & Pan, B. C. Iron in non-hydroxyl radical mediated photochemical processes for dye degradation: catalyst or inhibitor? Chemosphere 131, 55–62 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Wu, B. D., Yin, R., Zhang, G. Y., Yu, C. & Zhang, S. J. Effects of water chemistry on decolorization in three photochemical processes: pro and cons of the UV/AA process. Water Res. 105, 568–574 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Wu, B. D., Zhang, G. Y. & Zhang, S. J. Fate and implication of acetylacetone in photochemical processes for water treatment. Water Res. 101, 233–240 (2016). This article describes the possible environmental fate of AcAc and demonstrates that its photolysis products are bioavailable small molecular acids.

    Article  CAS  PubMed  Google Scholar 

  61. Chen, Z. H. et al. Acetylacetone as an efficient electron shuttle for concerted redox conversion of arsenite and nitrate in the opposite direction. Water Res. 124, 331–340 (2017). This article demonstrates the possibility of AcAc being involved in oxidation and reduction processes as an electron shuttle.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang, G. Y., Wu, B. D. & Zhang, S. J. Effects of acetylacetone on the photoconversion of pharmaceuticals in natural and pure waters. Environ. Pollut. 225, 691–699 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Yang, M. H. et al. Feasibility of the UV/AA process as a pretreatment approach for bioremediation of dye-laden wastewater. Chemosphere 194, 488–494 (2018).

    Article  CAS  PubMed  Google Scholar 

  64. Chen, Z. H., Jin, J. Y., Song, X. J., Zhang, G. Y. & Zhang, S. J. Redox conversion of arsenite and nitrate in the UV/quinone systems. Environ. Sci. Technol. 52, 10011–10018 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Jin, J. Y. et al. Effects of acetylacetone on the thermal and photochemical conversion of benzoquinone in aqueous solution. Chemosphere 223, 628–635 (2019).

    Article  CAS  PubMed  Google Scholar 

  66. Jin, J. Y. et al. Enhanced photooxidation of hydroquinone by acetylacetone, a novel photosensitizer and electron shuttle. Environ. Sci. Technol. 53, 11232–11239 (2019). This article investigates the interactions between AcAc and hydroquinone under photochemical conditions, confirming AcAc as a photosensitizer and electron shuttle that might be able to regulate the redox cycle of quinones.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang, L., Wu, B. D., Zhang, G. Y., Gan, Y. H. & Zhang, S. J. Enhanced decomplexation of Cu(II)-EDTA: the role of acetylacetone in Cu-mediated photo-Fenton reactions. Chem. Eng. J. 358, 1218–1226 (2019).

    Article  CAS  Google Scholar 

  68. Wu, B. D. et al. Reduction of chromate with UV/diacetyl for the final effluent to be below the discharge limit. J. Hazard. Mater. 389, 121841–121850 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Wu, B. D. et al. Role of complexation in the photochemical reduction of chromate by acetylacetone. J. Hazard. Mater. 400, 123306–123313 (2020). This study demonstrates the role of complexation in the UV/AcAc process.

    Article  CAS  PubMed  Google Scholar 

  70. Wu, B. D. et al. Key factors in the ligand effects on the photo redox cycling of aqueous iron species. Geochim. Cosmochim. Acta 281, 1–11 (2020).

    Article  CAS  Google Scholar 

  71. Zhang, G. Y. & Zhang, S. J. Quantitative structure-activity relationship in the photodegradation of azo dyes. J. Environ. Sci. 90, 41–50 (2020).

    Article  Google Scholar 

  72. Chen, Z. H. et al. Effects of low-molecular-weight organics on the photoreduction of bromate in water. ACS EST Eng. 3, 581–590 (2021).

    Article  Google Scholar 

  73. Zhang, L. et al. Photochemical synthesis of selenium nanospheres of tunable size and colloidal stability with simple diketones. Langmuir 37, 9793–9801 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, L. et al. An all-in-one approach for synthesis and functionalization of nano colloidal gold with acetylacetone. Nanotechnology 33, 075605–075616 (2021).

    Article  Google Scholar 

  75. Zheng, H. C. et al. UV-induced redox conversion of tellurite by biacetyl. Environ. Sci. Technol. 55, 16646–16654 (2021).

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, G. Y. et al. Key structural features that determine the selectivity of UV/acetylacetone for the degradation of aromatic pollutants when compared to UV/H2O2. Water Res. 196, 117046–117054 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Zhang, G. Y., Wu, B. D., Zhang, S. J. & Pan, B. C. Diketone and UV based advanced oxidation/reduction technologies: molecular mechanisms and research advances. Sci. Sin. Chim. 51, 1060–1074 (2021).

    Article  Google Scholar 

  78. Xie, M., Zhang, C. Y., Zheng, H. C., Zhang, G. Y. & Zhang, S. J. Peroxyl radicals from diketones enhanced the indirect photochemical transformation of carbamazepine: kinetics, mechanisms, and products. Water Res. 217, 118424–118432 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Zhang, L. et al. Diketone-mediated photochemical reduction of selenite to elemental selenium: role of carbon-centered radicals and complexation. Chem. Eng. J. 445, 136831–136840 (2022).

    Article  CAS  Google Scholar 

  80. Wei, S. S. et al. Effects of a redox-active diketone on the photochemical transformation of roxarsone: mechanisms and environmental implications. Chemosphere 308, 136326–136335 (2022).

    Article  CAS  PubMed  Google Scholar 

  81. Loeb, S. et al. The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ. Sci. Technol. 53, 2937–2947 (2018).

    Article  PubMed  Google Scholar 

  82. Geng, Z. et al. Enhanced photocatalytic conversion and selectivity of nitrate reduction to nitrogen over AgCl/TiO2 nanotubes. Dalton Trans. 47, 11104–11112 (2018).

    Article  CAS  PubMed  Google Scholar 

  83. Nagai, K. et al. Antagonistic regulation of the gibberellic acid response during stem growth in rice. Nature 584, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  84. European Food Safety Authority Aliphatic dialcohols, diketones, and hydroxyketones from chemical group 10 (Commission Regulation (EC) No 1565/2000). EFSA J. 166, 1–44 (2004).

    Google Scholar 

  85. Shibamoto, T. Diacetyl: occurrence, analysis, and toxicity. J. Agric. Food Chem. 62, 4048–4053 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Urbaniak, W. et al. Properties and application of diketones and their derivatives. Chemik 65, 273–277 (2011).

    CAS  Google Scholar 

  87. Wang, X., Zhang, Y., Wang, Z. W., Xu, C. H. & Tratnyek, P. G. Advances in metal (loid) oxyanion removal by zerovalent iron: kinetics, pathways, and mechanisms. Chemosphere 280, 130766–130784 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Zheng, H. C. et al. Unveiling the synergic effect in UV/acetylacetone for redox transformation of toxic oxysalts. Preprint at https://doi.org/10.1021/acsestwater.3c00081 (2023).

  89. Kim, C., Zhou, Q. H., Deng, B. L., Thornton, E. C. & Xu, H. F. Chromium(VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environ. Sci. Technol. 35, 2219–2225 (2001).

    Article  CAS  PubMed  Google Scholar 

  90. Barrera-Díaz, C. E., Lugo-Lugo, V. & Bilyeu, B. A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J. Hazard. Mater. 223, 1–12 (2012).

    Article  PubMed  Google Scholar 

  91. Xie, B. H. et al. One-step removal of Cr(VI) at alkaline pH by UV/sulfite process: reduction to Cr(III) and in situ Cr(III) precipitation. Chem. Eng. J. 308, 791–797 (2017).

    Article  CAS  Google Scholar 

  92. Sun, J., Mao, J., Gong, H. & Lan, Y. Q. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with α-OH. J. Hazard. Mater. 168, 1569–1574 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Marinho, B. A., Cristovao, R. O., Loureiro, J. M., Boaventura, R. A. & Vilar, V. J. Solar photocatalytic reduction of Cr(VI) over Fe(III) in the presence of organic sacrificial agents. Appl. Catal. B 192, 208–219 (2016).

    Article  CAS  Google Scholar 

  94. Shah, C. P., Dwivedi, C., Singh, K. K., Kumar, M. & Bajaj, P. N. Riley oxidation: a forgotten name reaction for synthesis of selenium nanoparticles. Mater. Res. Bull. 45, 1213–1217 (2010).

    Article  CAS  Google Scholar 

  95. Scaiano, J. C., Stamplecoskie, K. G. & Hallett-Tapley, G. L. Photochemical Norrish type I reaction as a tool for metal nanoparticle synthesis: importance of proton coupled electron transfer. Chem. Commun. 48, 4798–4808 (2012).

    Article  CAS  Google Scholar 

  96. Brenninger, C., Jolliffe, J. D. & Bach, T. Chromophore activation of α,β-unsaturated carbonyl compounds and its spplication to enantioselective photochemical reactions. Angew. Chem. Int. Ed. 57, 14338–14349 (2018).

    Article  CAS  Google Scholar 

  97. Albini, A. Norrish’ type I and II reactions and their role in the building of photochemical science. Photochem. Photobiol. Sci. 20, 161–181 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Sugden, T. M. Photochemistry and Reaction Kinetics Ch. 3 (Cambridge Univ. Press, 2010).

  99. Nau, W. M. & Scaiano, J. C. Oxygen quenching of excited aliphatic ketones and diketones. J. Phys. Chem. 100, 11360–11367 (1996).

    Article  CAS  Google Scholar 

  100. Neevel, J. G. The Biacetyl-azo Dye System: A Model System to Investigate Oxidative Dye Fading. PhD thesis, Delft Univ. Technology (1992).

  101. Lowrey, A. H., George, C., d’Antonio, P. & Karle, J. Structure of acetylacetone by electron diffraction. J. Am. Chem. Soc. 93, 6399–6403 (1971).

    Article  CAS  Google Scholar 

  102. Verma, P. K., Koch, F., Steinbacher, A., Nuernberger, P. & Brixner, T. Ultrafast UV-induced photoisomerization of intramolecularly H-bonded symmetric β-diketones. J. Am. Chem. Soc. 136, 14981–14989 (2014).

    Article  CAS  PubMed  Google Scholar 

  103. Sandler, I., Harper, J. B. & Ho, J. M. Explanation of substituent effects on the enolization of β-diketones and β-ketoesters. J. Chem. Educ. 98, 1043–1048 (2021).

    Article  CAS  Google Scholar 

  104. Bhattacherjee, A., Pemmaraju, C. D., Schnorr, K., Attar, A. R. & Leone, S. R. Ultrafast intersystem crossing in acetylacetone via femtosecond X-ray transient absorption at the carbon K-edge. J. Am. Chem. Soc. 139, 16576–16583 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Kaya, K., Harshbarger, W. R. & Robin, M. B. Triplet states of biacetyl and energy transfer as revealed by opto-acoustic spectroscopy. J. Chem. Phys. 60, 4231–4236 (1974).

    Article  CAS  Google Scholar 

  106. Faust, B. C., Powell, K., Rao, C. J. & Anastasio, C. Aqueous-phase photolysis of biacetyl (an α-dicarbonyl compound): a sink for biacetyl, and a source of acetic acid, peroxyacetic acid, hydrogen peroxide, and the highly oxidizing acetylperoxyl radical in aqueous aerosols, fogs, and clouds. Atmos. Environ. 31, 497–510 (1997).

    Article  CAS  Google Scholar 

  107. Forbes, M. D. Carbon-Centered Free Radicals and Radical Cations: Structure, Reactivity, and Dynamics Ch. 3 (John Wiley & Sons, 2010).

  108. Gligorovski, S., Strekowski, R., Barbati, S. & Vione, D. Environmental implications of hydroxyl radicals (·OH). Chem. Rev. 115, 13051–13092 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Wei, S. J. Performance and Structure-Activity Relationship of Acetylacetone and its Structural Analogues for Photochemical Conversion of Metal Oxysalts and Organic Dyes. MSc thesis, Nanjing Univ. (2020).

  110. Mattes, S. L. & Farid, S. Exciplexes and electron transfer reactions. Science 226, 917–921 (1984).

    Article  CAS  PubMed  Google Scholar 

  111. Kuzmin, M. G., Soboleva, I. V. & Dolotova, E. V. Transient exciplex formation electron transfer mechanism. Adv. Phys. Chem. 2011, 1–18 (2011).

    Article  Google Scholar 

  112. Jiang, B. et al. The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives. J. Hazard. Mater. 365, 205–226 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Beck, M. T. Critical evaluation of equilibrium constants in solution. Stability constants of metal complexes. Pure Appl. Chem 49, 127–136 (1977).

    Article  CAS  Google Scholar 

  114. Kawaguchi, S. Variety in the coordination modes of β-dicarbonyl compounds in metal complexes. Coord. Chem. Rev. 70, 51–84 (1986).

    Article  CAS  Google Scholar 

  115. Sodhi, R. K. & Paul, S. An overview of metal acetylacetonates: developing areas/routes to new materials and applications in organic syntheses. Catal. Surv. Asia 22, 31–62 (2018).

    Article  CAS  Google Scholar 

  116. Mofaddel, N., Bar, N., Villemin, D. & Desbène, P. Determination of acidity constants of enolisable compounds by capillary electrophoresis. Anal. Bioanal. Chem. 380, 664–668 (2004).

    Article  CAS  PubMed  Google Scholar 

  117. Fernandes, C. I., Veiga, P. M., Ferreira, J. J. M. & Hughes, M. Green growth versus economic growth: do sustainable technology transfer and innovations lead to an imperfect choice? Bus. Strateg. Environ. 30, 2021–2037 (2021).

    Article  Google Scholar 

  118. Anastas, P. & Eghbali, N. Green chemistry: principles and practice. Chem. Soc. Rev. 39, 301–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Food Additive Status List (US Food and Drug Administration, 2022).

  120. Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. EUR-Lex (20 April 2023); https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008R1272

  121. Singleton, R. & Singleton, D. R. Remembering our forebears: Albert Jan Kluyver and the unity of life. J. Hist. Biol. 50, 169–218 (2017).

    Article  PubMed  Google Scholar 

  122. van Niel, C. B., Kluyver, A. J. & Derv, H. G. About diacetyl. Biochem. Z. 210, 234–251 (1929).

    Google Scholar 

  123. Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    Article  CAS  PubMed  Google Scholar 

  124. Yang, F. et al. Performance of UV/acetylacetone process for saline dye wastewater treatment: kinetics and mechanism. J. Hazard. Mater. 406, 124774–124784 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Zhang, S. J., Jin, J. Y., Wang, X. M., Wang, X. & Zhang, W. T. Application of acetylacetone in inhibiting growth of cyanobacteria. US patent, 146,422,8B2 (2022).

  126. Yilimulati, M. et al. Regulation of photosynthesis in bloom-forming cyanobacteria with the simplest β-diketone. Environ. Sci. Technol. 55, 14173–14184 (2021). This article demonstrates that AcAc can effectively inhibit cyanobacterial growth in a non-oxidative pathway, providing a new approach for controlling harmful blooms.

    Article  CAS  PubMed  Google Scholar 

  127. Yilimulati, M., Zhou, L., Shevela, D. & Zhang, S. J. Acetylacetone interferes with carbon and nitrogen metabolism of Microcystis aeruginosa by cutting off the electron flow to ferredoxin. Environ. Sci. Technol. 56, 9683–9692 (2022).

    Article  CAS  PubMed  Google Scholar 

  128. Castelvecchi, D. & Stoye, E. ‘Elegant’ catalysts that tell left from right scoop chemistry Nobel. Nature 598, 247–248 (2021).

    Article  CAS  PubMed  Google Scholar 

  129. Wacławek, S. et al. Making waves: defining advanced reduction technologies from the perspective of water treatment. Water Res. 212, 118101–118104 (2022).

    Article  PubMed  Google Scholar 

  130. Campos-Martin, J. M., Blanco-Brieva, G. & Fierro, J. L. Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006).

    Article  CAS  Google Scholar 

  131. Stolarski, R. S. History of the study of atmospheric ozone. Ozone Sci. Eng. 23, 421–428 (2001).

    Article  CAS  Google Scholar 

  132. Koppenol, W. H. The Haber-Weiss cycle—70 years later. Redox Rep. 6, 229–234 (2001).

    Article  CAS  PubMed  Google Scholar 

  133. Crow, S. Peracetic acid sterilization: a timely development for a busy healthcare industry. Infect. Control Hosp. Epidemiol. 13, 111–113 (1992).

    Article  CAS  PubMed  Google Scholar 

  134. Heath, R. L. Breakdown of ozone and formation of hydrogen-peroxide in aqueous-solutions of amine buffers exposed to ozone. Toxicol. Lett. 4, 449–453 (1979).

    Article  CAS  Google Scholar 

  135. Peyton, G. R., Huang, F. Y., Burleson, J. L. & Glaze, W. H. Destruction of pollutants in water with ozone in combination with ultraviolet radiation. 1. General principles and oxidation of tetrachloroethylene. Environ. Sci. Technol. 16, 448–453 (1982).

    Article  CAS  Google Scholar 

  136. Glaze, W. H. Drinking-water treatment with ozone. Environ. Sci. Technol. 21, 224–230 (1987).

    Article  CAS  PubMed  Google Scholar 

  137. Langlois, G. W., Jones, B. M., Sakaji, R. H. & Daughton, C. G. Quantitation of carbon in oil shale process wastewaters: coulometry coupled with UV-peroxydisulfate and high-temperature oxidation. J. Test. Eval. 14, 5157519 (1984).

    Google Scholar 

  138. Pignatello, J. J. Dark and photoassisted Fe3+-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environ. Sci. Technol. 26, 944–951 (1992).

    Article  CAS  Google Scholar 

  139. Lubello, C., Caretti, C. & Gori, R. Comparison between PAA/UV and H2O2/UV disinfection for wastewater reuse. Water Sci. Technol. Water Supply 2, 205–212 (2002).

    Article  CAS  Google Scholar 

  140. Watts, M. J. & Linden, K. G. Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Res. 41, 2871–2878 (2007).

    Article  CAS  PubMed  Google Scholar 

  141. Huang, L., Dong, W. B. & Hou, H. Q. Investigation of the reactivity of hydrated electron toward perfluorinated carboxylates by laser flash photolysis. Chem. Phys. Lett. 436, 124–128 (2007).

    Article  CAS  Google Scholar 

  142. Vecitis, C. D., Park, H., Cheng, J., Mader, B. T. & Hoffmann, M. R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Eng. China 3, 129–151 (2009).

    Article  CAS  Google Scholar 

  143. Fang, J. Y., Fu, Y. & Shang, C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system. Environ. Sci. Technol. 48, 1859–1868 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant numbers 21976083 and 22176087) and the Key Technologies Research and Development Program of the Ministry of Science and Technology of the People’s Republic of China (grant number 2019YFC0408302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujuan Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Ran Yin and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Zheng, H. & Tratnyek, P.G. Advanced redox processes for sustainable water treatment. Nat Water 1, 666–681 (2023). https://doi.org/10.1038/s44221-023-00098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44221-023-00098-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing