Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Optimizing real-world benefit and risk of new psychedelic medications: the need for innovative postmarket surveillance

Abstract

The encouraging results of late-phase clinical trials investigating psychedelic-assisted psychotherapy suggests that US Food and Drug Administration approval and subsequent expansion of use is imminent in the USA. Without fit-for-purpose postmarket surveillance to proactively monitor utilization by patients and providers, there is a risk that the real-world benefits of psychedelic-assisted psychotherapy will not be realized. Incorrect conclusions, such as misattribution of adverse events to illicit psychedelics, may result from ill-designed surveillance programs. A successful surveillance program should monitor appropriate, equitable access for patients and inform reasonable limitations to improve patient safety. Multiple domains, including environmental factors, personal factors and relevant effectiveness and safety outcomes, should be incorporated. Current data systems that monitor drug use are generally ill-suited to address the unique needs for psychedelic surveillance. An intentionally designed mosaic of data systems is required to monitor the safety and effectiveness of psychedelic surveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The continuum of psychedelic drug use.
Fig. 2: Evolving research needs as the market expands.

Similar content being viewed by others

References

  1. Nichols, D. E. Psychedelics. Pharmacol. Rev. 68, 264–355 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Search for: Psilocybin | clinicaltrials.gov (National Library of Medicine, accessed 20 December 2023); https://clinicaltrials.gov/search?intr=Psilocybin&aggFilters=phase:2%203,status:not%20rec%20act,studyType:int&start=2015-01-01_

  3. Search for: Lysergic Acid Diethylamide | clinicaltrials.gov. (National Library of Medicine, accessed 20 December 2023); https://clinicaltrials.gov/search?intr=Lysergic%20Acid%20Diethylamide&aggFilters=phase:2%203,status:rec%20act%20not%20com,studyType:int&start=2015-01-01_

  4. Search for: Ketamine | clinicaltrials.gov. (National Library of Medicine, accessed 20 December 2023); https://clinicaltrials.gov/search?intr=Ketamine&aggFilters=phase:2%203,status:rec%20act%20not%20com,studyType:int&start=2015-01-01_

  5. Raison, C. L. et al. Single-dose psilocybin treatment for major depressive disorder: a randomized clinical trial. JAMA 330, 843–853 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goodwin, G. M. et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N. Engl. J. Med. 387, 1637–1648 (2022).

    Article  PubMed  Google Scholar 

  7. Mitchell, J. M. et al. MDMA-assisted therapy for severe PTSD: a randomized, double-blind, placebo-controlled phase 3 study. Nat. Med. 27, 1025–1033 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mitchell, J. M. et al. MDMA-assisted therapy for moderate to severe PTSD: a randomized, placebo-controlled phase 3 trial. Nat. Med. 29, 2473–2480 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. MAPS PBC Announces Submission of New Drug Application to the FDA for MDMA-Assisted Therapy for PTSD (MAPS Public Benefit Corporation, accessed 20 December 2023); https://mapsbcorp.com/news/mdma-for-ptsd-fda-submission/

  10. Psychedelic Drugs: Considerations for Clinical Investigations (Food and Drug Administration, accessed 5 July 2023); https://www.fda.gov/regulatory-information/search-fda-guidance-documents/psychedelic-drugs-considerations-clinical-investigations

  11. Blanco, C. et al. Generalizability of clinical trials for alcohol dependence to community samples. Drug Alcohol Depend. 98, 123–128 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cook, R. R. et al. Estimating the impact of stimulant use on initiation of buprenorphine and extended-release naltrexone in two clinical trials and real-world populations. Addict. Sci. Clin. Pract. 18, 11 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Humphreys, K., Weingardt, K. R. & Harris, A. H. Influence of subject eligibility criteria on compliance with National Institutes of Health guidelines for inclusion of women, minorities and children in treatment research. Alcohol Clin. Exp. Res. 31, 988–995 (2007).

    Article  PubMed  Google Scholar 

  14. Md Khairi, L. N. H., Fahrni, M. L. & Lazzarino, A. I. The race for global equitable access to COVID-19 vaccines. Vaccines 10, 1306 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Storbjork, J., Garfield, J. B. & Larner, A. Implications of eligibility criteria on the generalizability of alcohol and drug treatment outcome research: a study of real-world treatment seekers in Sweden and in Australia. Subst. Use Misuse 52, 439–450 (2017).

    Article  PubMed  Google Scholar 

  16. Susukida, R., Crum, R. M., Stuart, E. A., Ebnesajjad, C. & Mojtabai, R. Assessing sample representativeness in randomized controlled trials: application to the National Institute of Drug Abuse Clinical Trials Network. Addiction 111, 1226–1234 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Berridge, V. Heroin prescription and history. N. Engl. J. Med. 361, 820–821 (2009).

    Article  PubMed  Google Scholar 

  18. Hall, W. et al. Public health implications of legalising the production and sale of cannabis for medicinal and recreational use. Lancet 394, 1580–1590 (2019).

    Article  PubMed  Google Scholar 

  19. Heal, D. J., Smith, S. L., Gosden, J. & Nutt, D. J. Amphetamine, past and present—a pharmacological and clinical perspective. J. Psychopharmacol. 27, 479–496 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Karch, S. B. Cocaine: history, use, abuse. J. R. Soc. Med. 92, 393–397 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuehn, B. M. Methadone treatment marks 40 years. JAMA 294, 887–889 (2005).

    Article  PubMed  Google Scholar 

  22. Califf, R. M. Now is the time to fix the evidence generation system. Clin. Trials 20, 3–12 (2023).

    Article  PubMed  Google Scholar 

  23. Kim, J., Farchione, T., Potter, A., Chen, Q. & Temple, R. Esketamine for treatment-resistant depression—first FDA-approved antidepressant in a new class. N. Engl. J. Med. 381, 1–4 (2019).

    Article  PubMed  Google Scholar 

  24. Gastaldon, C., Raschi, E., Kane, J. M., Barbui, C. & Schoretsanitis, G. Post-marketing safety concerns with esketamine: a disproportionality analysis of spontaneous reports submitted to the FDA adverse event reporting system. Psychother. Psychosom. 90, 41–48 (2021).

    Article  PubMed  Google Scholar 

  25. Dasgupta, N., Schwarz, J., Hennessy, S., Ertefaie, A. & Dart, R. C. Causal inference for evaluating prescription opioid abuse using trend-in-trend design. Pharmacoepidemiol. Drug Saf. 28, 716–725 (2019).

    Article  PubMed  Google Scholar 

  26. Delgadillo, J. et al. How reliable is depression screening in alcohol and drug users? A validation of brief and ultra-brief questionnaires. J. Affect. Disord. 134, 266–271 (2011).

    Article  PubMed  Google Scholar 

  27. Foa, E. B. et al. Psychometric properties of the Posttraumatic Stress Disorder Symptom Scale Interview for DSM-5 (PSSI-5). Psychol. Assess. 28, 1159–1165 (2016).

    Article  PubMed  Google Scholar 

  28. Spitzer, R. L., Kroenke, K., Williams, J. B. & Löwe, B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch. Intern. Med. 166, 1092–1097 (2006).

    Article  PubMed  Google Scholar 

  29. Di Forti, M. et al. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. Lancet Psychiatry 6, 427–436 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Quattrone, D. et al. Daily use of high-potency cannabis is associated with more positive symptoms in first-episode psychosis patients: the EU-GEI case-control study. Psychol. Med. 51, 1329–1337 (2021).

    Article  PubMed  Google Scholar 

  31. Ragnhildstveit, A. et al. The potential of ketamine for posttraumatic stress disorder: a review of clinical evidence. Ther. Adv. Psychopharmacol. 13, 20451253231154125 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Daly, E. J. et al. Efficacy of esketamine nasal spray plus oral antidepressant treatment for relapse prevention in patients with treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry 76, 893–903 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rucker, J. J. et al. The effects of psilocybin on cognitive and emotional functions in healthy participants: results from a phase 1, randomised, placebo-controlled trial involving simultaneous psilocybin administration and preparation. J. Psychopharmacol. 36, 114–125 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Muller, F. et al. Flashback phenomena after administration of LSD and psilocybin in controlled studies with healthy participants. Psychopharmacology (Berl.) 239, 1933–1943 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Breeksema, J. J. et al. Adverse events in clinical treatments with serotonergic psychedelics and MDMA: a mixed-methods systematic review. J. Psychopharmacol. 36, 1100–1117 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ching, T. H. et al. MDMA-assisted therapy for posttraumatic stress disorder: a pooled analysis of ethnoracial differences in efficacy and safety from two Phase 2 open-label lead-in trials and a Phase 3 randomized, blinded placebo-controlled trial. J. Psychopharmacol. 36, 974–986 (2022).

    Article  PubMed  Google Scholar 

  37. Beck, K. et al. Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia: a systematic review and meta-analysis. JAMA Netw. Open 3, e204693 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Black, E. et al. Toxicological analysis of serious drug-related harm among electronic dance music festival attendees in New South Wales, Australia: a consecutive case series. Drug Alcohol Depend. 213, 108070 (2020).

    Article  PubMed  Google Scholar 

  39. Darke, S., Duflou, J., Peacock, A., Farrell, M. & Lappin, J. Characteristics and circumstances of death related to new psychoactive stimulants and hallucinogens in Australia. Drug Alcohol Depend. 204, 107556 (2019).

    Article  PubMed  Google Scholar 

  40. Redona, P. T. Jr, Woods, C., Jackson, D. & Usher, K. Rates and patterns of Australian emergency department presentations of people who use stimulants: a systematic literature review. Cureus 14, e30429 (2022).

    PubMed  PubMed Central  Google Scholar 

  41. Simonsson, O., Hendricks, P. S., Chambers, R., Osika, W. & Goldberg, S. B. Prevalence and associations of challenging, difficult or distressing experiences using classic psychedelics. J. Affect. Disord. 326, 105–110 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Jones, G., Arias, D. & Nock, M. Associations between MDMA/ecstasy, classic psychedelics, and suicidal thoughts and behaviors in a sample of US adolescents. Sci. Rep. 12, 21927 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Stein, D. J. et al. Cross-national analysis of the associations between traumatic events and suicidal behavior: findings from the WHO World Mental Health Surveys. PLoS One 5, e10574 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shrier, I. & Platt, R. W. Reducing bias through directed acyclic graphs. BMC Med. Res. Methodol. 8, 70 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Beran, T. N. & Violato, C. Structural equation modeling in medical research: a primer. BMC Res. Notes 3, 267 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mansournia, M. A. & Altman, D. G. Population attributable fraction. Brit. Med. J. 360, k757 (2018).

    Article  PubMed  Google Scholar 

  47. Ammerman, B. A. & Law, K. C. Using intensive time sampling methods to capture daily suicidal ideation: a systematic review. J. Affect. Disord. 299, 108–117 (2022).

    Article  PubMed  Google Scholar 

  48. Gee, B. L., Han, J., Benassi, H. & Batterham, P. J. Suicidal thoughts, suicidal behaviours and self-harm in daily life: a systematic review of ecological momentary assessment studies. Digit. Health. 6, 2055207620963958 (2020).

    PubMed  PubMed Central  Google Scholar 

  49. Sedano-Capdevila, A., Porras-Segovia, A., Bello, H. J., Baca-Garcia, E. & Barrigon, M. L. Use of ecological momentary assessment to study suicidal thoughts and behavior: a systematic review. Curr. Psychiatry Rep. 23, 41 (2021).

    Article  PubMed  Google Scholar 

  50. Black, S. B. et al. The critical role of background rates of possible adverse events in the assessment of COVID-19 vaccine safety. Vaccine 39, 2712–2718 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Baylen, C. A. & Rosenberg, H. A review of the acute subjective effects of MDMA/ecstasy. Addiction 101, 933–947 (2006).

    Article  PubMed  Google Scholar 

  52. Huang, J., Liu, D., Bai, J. & Gu, H. Median effective dose of esketamine for intranasal premedication in children with congenital heart disease. BMC Anesthesiol. 23, 129 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Rocha, J. M. et al. Effects of ayahuasca on the recognition of facial expressions of emotions in naive healthy volunteers: a pilot, proof-of-concept, randomized controlled trial. J. Clin. Psychopharmacol. 41, 267–274 (2021).

    Article  PubMed  Google Scholar 

  54. Bonsignore, A., Barranco, R., Morando, A., Fraternali Orcioni, G. & Ventura, F. MDMA induced cardio-toxicity and pathological myocardial effects: a systematic review of experimental data and autopsy findings. Cardiovasc. Toxicol. 19, 493–499 (2019).

    Article  PubMed  Google Scholar 

  55. Dahmane, E., Hutson, P. R. & Gobburu, J. V. S. Exposure-response analysis to assess the concentration–QTc relationship of psilocybin/psilocin. Clin. Pharmacol. Drug Dev. 10, 78–85 (2021).

    Article  PubMed  Google Scholar 

  56. Diffley, M., Armenian, P., Gerona, R., Reinhartz, O. & Avasarala, K. Catecholaminergic polymorphic ventricular tachycardia found in an adolescent after a methylenedioxymethamphetamine and marijuana-induced cardiac arrest. Crit. Care Med. 40, 2223–2226 (2012).

    Article  PubMed  Google Scholar 

  57. Zhou, Y. L. et al. Cardiovascular effects of repeated subanaesthetic ketamine infusion in depression. J. Psychopharmacol. 35, 159–167 (2021).

    Article  PubMed  Google Scholar 

  58. Kahn, D. E., Ferraro, N. & Benveniste, R. J. 3 cases of primary intracranial hemorrhage associated with ‘Molly’, a purified form of 3,4-methylenedioxymethamphetamine (MDMA). J. Neurol. Sci. 323, 257–260 (2012).

    Article  PubMed  Google Scholar 

  59. Ludwig, V. M. et al. Cardiovascular effects of combining subcutaneous or intravenous esketamine and the MAO inhibitor tranylcypromine for the treatment of depression: a retrospective cohort study. CNS Drugs 35, 881–892 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Michael White, C. How MDMA’s pharmacology and pharmacokinetics drive desired effects and harms. J. Clin. Pharmacol. 54, 245–252 (2014).

    Article  PubMed  Google Scholar 

  61. McNamara, R., Maginn, M. & Harkin, A. Caffeine induces a profound and persistent tachycardia in response to MDMA (‘Ecstasy’) administration. Eur. J. Pharmacol. 555, 194–198 (2007).

    Article  PubMed  Google Scholar 

  62. Malcolm, B. & Thomas, K. Serotonin toxicity of serotonergic psychedelics. Psychopharmacology (Berl.) 239, 1881–1891 (2022).

    Article  PubMed  Google Scholar 

  63. Pilgrim, J. L., Gerostamoulos, D., Woodford, N. & Drummer, O. H. Serotonin toxicity involving MDMA (ecstasy) and moclobemide. Forensic Sci. Int. 215, 184–188 (2012).

    Article  PubMed  Google Scholar 

  64. Sklerov, J., Levine, B., Moore, K. A., King, T. & Fowler, D. A fatal intoxication following the ingestion of 5-methoxy-N,N-dimethyltryptamine in an ayahuasca preparation. J. Anal. Toxicol. 29, 838–841 (2005).

    Article  PubMed  Google Scholar 

  65. de la Torre, R. et al. Human pharmacology of MDMA: pharmacokinetics, metabolism and disposition. Ther. Drug Monit. 26, 137–144 (2004).

    Article  PubMed  Google Scholar 

  66. Vizeli, P., Schmid, Y., Prestin, K., Meyer Zu Schwabedissen, H. E. & Liechti, M. E. Pharmacogenetics of ecstasy: CYP1A2, CYP2C19 and CYP2B6 polymorphisms moderate pharmacokinetics of MDMA in healthy subjects. Eur. Neuropsychopharmacol. 27, 232–238 (2017).

    Article  PubMed  Google Scholar 

  67. Vizeli, P. et al. Genetic influence of CYP2D6 on pharmacokinetics and acute subjective effects of LSD in a pooled analysis. Sci. Rep. 11, 10851 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pardo-Lozano, R. et al. Clinical pharmacology of 3,4-methylenedioxymethamphetamine (MDMA, ‘ecstasy’): the influence of gender and genetics (CYP2D6, COMT, 5-HTT). PLoS One 7, e47599 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Shen, H. W., Jiang, X. L., Winter, J. C. & Yu, A. M. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions and pharmacological actions. Curr. Drug Metab. 11, 659–666 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Hicks, J. K. et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin. Pharmacol. Ther. 98, 127–134 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Smith, S. M. et al. Classification and definition of misuse, abuse and related events in clinical trials: ACTTION systematic review and recommendations. Pain 154, 2287–2296 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Heal, D. J., Gosden, J. & Smith, S. L. Evaluating the abuse potential of psychedelic drugs as part of the safety pharmacology assessment for medical use in humans. Neuropharmacology 142, 89–115 (2018).

    Article  PubMed  Google Scholar 

  73. Neitzke-Spruill, L. & Glasser, C. A gratuitous grace: the influence of religious set and intent on the psychedelic experience. J. Psychoactive Drugs 50, 314–321 (2018).

    Article  PubMed  Google Scholar 

  74. Golden, T. L. et al. Effects of setting on psychedelic experiences, therapies and outcomes: a rapid scoping review of the literature. Curr. Top. Behav. Neurosci. 56, 35–70 (2022).

    Article  PubMed  Google Scholar 

  75. Carhart-Harris, R. L. et al. Psychedelics and the essential importance of context. J. Psychopharmacol. 32, 725–731 (2018).

    Article  PubMed  Google Scholar 

  76. Doll, A. What to say (and not to say) when reporters ask questions. Nurs. Life 2, 56–61 (1982).

    PubMed  Google Scholar 

  77. de la Fuente Revenga, M. et al. Tolerance and cross-tolerance among psychedelic and nonpsychedelic 5-HT(2A) receptor agonists in mice. ACS Chem. Neurosci. 13, 2436–2448 (2022).

    Article  PubMed  Google Scholar 

  78. Morton, E. et al. Risks and benefits of psilocybin use in people with bipolar disorder: an international web-based survey on experiences of ‘magic mushroom’ consumption. J. Psychopharmacol. 37, 49–60 (2023).

    Article  PubMed  Google Scholar 

  79. Psilocybin Facilitator License Application Guide for Applications Submitted Online (Oregon Health Authority, accessed 14 June 2023); https://www.oregon.gov/oha/PH/PREVENTIONWELLNESS/Documents/Facilitator-License-Application-Guide-ONLINE.pdf

  80. Anderson, B. T., Danforth, A. L. & Grob, C. S. Psychedelic medicine: safety and ethical concerns. Lancet Psychiatry 7, 829–830 (2020).

    Article  PubMed  Google Scholar 

  81. McNamee, S., Devenot, N. & Buisson, M. Studying harms is key to improving psychedelic-assisted therapy-participants call for changes to research landscape. JAMA Psychiatry 80, 411–412 (2023).

    Article  PubMed  Google Scholar 

  82. McAninch, J. et al. (eds) in Pharmacoepidemiology 6th edn, Ch. 28, 701–722 (Wiley, 2020).

  83. Dart, R. C. Monitoring risk: post marketing surveillance and signal detection. Drug Alcohol Depend. 105, S26–S32 (2009).

    Article  PubMed  Google Scholar 

  84. Lawlor, D. A., Tilling, K. & Davey Smith, G. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 45, 1866–1886 (2016).

    PubMed  Google Scholar 

  85. Papp, L. M. et al. Development and acceptability of a method to investigate prescription drug misuse in daily life: ecological momentary assessment study. JMIR Mhealth Uhealth 8, e21676 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 32–38 (1985).

    Article  PubMed  Google Scholar 

  87. Drug Abuse Warning Network (DAWN) (Substance Abuse and Mental Health Services Administration, accessed 4 May 2023); https://www.samhsa.gov/data/data-we-collect/dawn-drug-abuse-warning-network

  88. Key Substance Use and Mental Health Indicators in the United States: Results from the 2021 National Survey on Drug Use and Health (Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration, 2022).

  89. Monitoring the Future (University of Michigan, 2022).

  90. National Hospital Care Survey (National Center for Health Statistics, accessed 4 May 2023); https://www.cdc.gov/nchs/nhcs/index.htm

  91. Gummin, D. D. et al. 2021 annual report of the National Poison Data System© (NPDS) from America’s Poison Centers: 39th annual report. Clin. Toxicol. (Phila.) 60, 1381–1643 (2022).

    Article  Google Scholar 

  92. Kumar, A. The newly available FAERS public dashboard: implications for health care professionals. Hosp. Pharm. 54, 75–77 (2019).

    Article  PubMed  Google Scholar 

  93. Platt, R. et al. The FDA sentinel initiative—an evolving national resource. N. Engl. J. Med. 379, 2091–2093 (2018).

    Article  PubMed  Google Scholar 

  94. Trinidad, J. P., Warner, M., Bastian, B. A., Minino, A. M. & Hedegaard, H. Using literal text from the death certificate to enhance mortality statistics: characterizing drug involvement in deaths. Natl Vital Stat. Rep. 65, 1–15 (2016).

    PubMed  Google Scholar 

  95. Monte, A. A. et al. Acute illness associated with cannabis use, by route of exposure: an observational study. Ann. Intern. Med. 170, 531–537 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. McCabe, S. E. et al. Trajectories of prescription drug misuse among US adults from ages 18 to 50 years. JAMA Netw. Open 5, e2141995 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

J.C.B., A.A.M., N.D., J.S.J., K.M.R., R.A.O. and R.C.D. substantially contributed to the conception and design of the work. J.C.B., A.A.M., J.S.J., K.M.R. and R.C.D. wrote the initial draft. J.C.B., A.A.M., N.D., J.S.J., K.M.R., R.A.O. and R.C.D. critically reviewed for intellectual content. J.C.B. led the writing and editing process.

Corresponding author

Correspondence to Joshua C. Black.

Ethics declarations

Competing interests

This research was conducted by Rocky Mountain Poison and Drug Safety (RMPDS). Outside of this work, RMPDS is supported by subscriptions from pharmaceutical manufacturers, government and non-government agencies for surveillance, research and reporting services. RMPDS is a division of the nonprofit Denver Health and Hospital Authority (DHHA), a political subdivision of the state of Colorado, USA. No subscriber participated in the development of these viewpoints.

Peer review

Peer review information

Nature Mental Health thanks Joshua Rosenblat, William R. Smith and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Black, J.C., Monte, A.A., Dasgupta, N. et al. Optimizing real-world benefit and risk of new psychedelic medications: the need for innovative postmarket surveillance. Nat. Mental Health 2, 469–477 (2024). https://doi.org/10.1038/s44220-024-00233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00233-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research