Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Maternal positive mental health during pregnancy impacts the hippocampus and functional brain networks in children

Abstract

Positive mental health is an essential component of overall health and well-being. However, research in this area has been relatively neglected. This study used a longitudinal dataset to investigate the impact of maternal positive emotions during pregnancy on brain structure and function in 7.5-year-old children (n = 381). A positive maternal mental health measure, including positive affect and emotional well-being during pregnancy, was developed through confirmatory factor analysis of questionnaires administered at 26–28 weeks. The study found that girls born to mothers who reported greater positive mental health during pregnancy showed larger bilateral hippocampi. Furthermore, children of mothers with greater positive mental health exhibited altered functional connectivity of several networks, including default mode, salience, executive control, amygdala and thalamo-hippocampal networks. These findings extend the study of maternal mental health beyond maternal psychopathology, suggesting the importance of promoting positive maternal mental health during pregnancy as a potential protective factor for offspring brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Heatmap among maternal mood during pregnancy, socio-environmental risks during pregnancy and postnatal maternal parenting stress.
Fig. 2: Effects of maternal positive emotion on brain morphology.
Fig. 3: Functional connectivity in relation to maternal positive emotion.

Similar content being viewed by others

Data availability

The datasets used in the current study are available. However, external investigators who plan to use data from the GUSTO study should fill out a request form (https://fas.sicsapps.com/site/login) and describe the study proposal.

Code availability

All results were obtained via the fitlm function in MATLAB and SurfStat available at https://www.math.mcgill.ca/keith/surfstat/.

References

  1. Buss, C. et al. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl Acad. Sci. USA 109, E1312–E1319 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buss, C., Davis, E. P., Muftuler, L. T., Head, K. & Sandman, C. A. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology 35, 141–153 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qiu, A. et al. Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Transl. Psychiatry 5, e508 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Qiu, A. et al. Maternal anxiety and infants’ hippocampal development: timing matters. Transl. Psychiatry 3, e306 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Qiu, A. et al. Effects of antenatal maternal depressive symptoms and socio-economic status on neonatal brain development are modulated by genetic risk. Cereb. Cortex 27, 3080–3092 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wei, D. et al. Cortical development mediates association of prenatal maternal depressive symptoms and child reward sensitivity: a longitudinal study. J. Am. Acad. Child Adolesc. Psychiatry 61, 392–401 (2022).

    Article  PubMed  Google Scholar 

  7. Zhang, H. et al. Maternal adverse childhood experience and depression in relation with brain network development and behaviors in children: a longitudinal study. Cereb. Cortex 31, 4233–4244 (2021).

    Article  PubMed  Google Scholar 

  8. Graham, R. M. et al. Maternal anxiety and depression during late pregnancy and newborn brain white matter development. Am. J. Neuroradiol. 41, 1908–1915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jha, S. C. et al. Antenatal depression, treatment with selective serotonin reuptake inhibitors, and neonatal brain structure: a propensity-matched cohort study. Psychiatry Res. Neuroimaging 253, 43–53 (2016).

    Article  PubMed  Google Scholar 

  10. Wen, D. J. et al. Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Transl. Psychiatry 7, e1103 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sandman, C. A., Buss, C., Head, K. & Davis, E. P. Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biol. Psychiatry 77, 324–334 (2015).

    Article  PubMed  Google Scholar 

  12. Soe, N. N. et al. Perinatal maternal depressive symptoms alter amygdala functional connectivity in girls. Hum. Brain Mapp. 39, 680–690 (2018).

    Article  PubMed  Google Scholar 

  13. Rifkin-Graboi, A. et al. Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biol. Psychiatry 74, 837–844 (2013).

    Article  PubMed  Google Scholar 

  14. Meaney, M. J. Perinatal maternal depressive symptoms as an issue for population health. Am. J. Psychiatry 175, 1084–1093 (2018).

    Article  PubMed  Google Scholar 

  15. Phua, D. Y. et al. Positive maternal mental health during pregnancy associated with specific forms of adaptive development in early childhood: evidence from a longitudinal study. Dev. Psychopathol. 29, 1573–1587 (2017).

    Article  PubMed  Google Scholar 

  16. Lamers, S. M., Westerhof, G. J., Glas, C. A. & Bohlmeijer, E. T. The bidirectional relation between positive mental health and psychopathology in a longitudinal representative panel study. J. Posit. Psychol. 10, 553–560 (2015).

    Article  Google Scholar 

  17. Keyes, C. L., Dhingra, S. S. & Simoes, E. J. Change in level of positive mental health as a predictor of future risk of mental illness. Am. J. Public Health 100, 2366–2371 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rifkin-Graboi, A. et al. Maternal sensitivity, infant limbic structure volume and functional connectivity: a preliminary study. Transl. Psychiatry 5, e668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, A. et al. Maternal care in infancy and the course of limbic development. Dev. Cogn. Neurosci. 40, 100714 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rifkin-Graboi, A. et al. An initial investigation of neonatal neuroanatomy, caregiving, and levels of disorganized behavior. Proc. Natl Acad. Sci. USA 116, 16787–16792 (2019).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Meades, R. & Ayers, S. Anxiety measures validated in perinatal populations: a systematic review. J. Affect. Disord. 133, 1–15 (2011).

    Article  PubMed  Google Scholar 

  22. Beck, A. T., Ward, C. H., Mendelson, M., Mock, J. & Erbaugh, J. An inventory for measuring depression. Arch. Gen. Psychiatry 4, 561–571 (1961).

    Article  CAS  PubMed  Google Scholar 

  23. Cox, J. L., Holden, J. M. & Sagovsky, R. Detection of postnatal depression. Development of the 10-item Edinburgh Postnatal Depression Scale. Br. J. Psychiatry 150, 782–786 (1987).

    Article  CAS  PubMed  Google Scholar 

  24. Reichenheim, M. E., Moraes, C. L., Oliveira, A. S. & Lobato, G. Revisiting the dimensional structure of the Edinburgh Postnatal Depression Scale (EPDS): empirical evidence for a general factor. BMC Med. Res. Methodol. 11, 93 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Szekely, E. et al. Maternal prenatal mood, pregnancy-specific worries, and early child psychopathology: findings from the DREAM BIG Consortium. J. Am. Acad. Child Adolesc. Psychiatry 60, 186–197 (2021).

    Article  PubMed  Google Scholar 

  26. O’Donnell, K. A. et al. The Maternal Adversity, Vulnerability and Neurodevelopment Project: theory and methodology. Can. J. Psychiatry 59, 497–508 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

    Article  Google Scholar 

  28. Unternaehrer, E. et al. Dissecting maternal care: patterns of maternal parenting in a prospective cohort study. J. Neuroendocrinol. 31, e12784 (2019).

    Article  PubMed  Google Scholar 

  29. Li, J. et al. Late gestational maternal serum cortisol is inversely associated with fetal brain growth. Neurosci. Biobehav. Rev. 36, 1085–1092 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Vreeburg, S. A. et al. Salivary cortisol levels in persons with and without different anxiety disorders. Psychosom. Med. 72, 340–347 (2010).

    Article  CAS  PubMed  Google Scholar 

  31. Coe, C. L. et al. Prenatal stress diminishes neurogenesis in the dentate gyrus of juvenile rhesus monkeys. Biol. Psychiatry 54, 1025–1034 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Weinstock, M. The long-term behavioural consequences of prenatal stress. Neurosci. Biobehav. Rev. 32, 1073–1086 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Leerkes, E. M. et al. Antecedents of maternal sensitivity during distressing tasks: integrating attachment, social information processing, and psychobiological perspectives. Child Dev. 86, 94–111 (2015).

    Article  PubMed  Google Scholar 

  34. Vieten, C. et al. The mindful moms training: development of a mindfulness-based intervention to reduce stress and overeating during pregnancy. BMC Pregnancy Childbirth 18, 201 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Assel, M. A. et al. How do mothers’ childrearing histories, stress and parenting affect children’s behavioural outcomes? Child Care Health Dev. 28, 359–368 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Luby, J. L. et al. Maternal support in early childhood predicts larger hippocampal volumes at school age. Proc. Natl Acad. Sci. USA 109, 2854–2859 (2012).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Wang, Q. et al. Maternal sensitivity predicts anterior hippocampal functional networks in early childhood. Brain Struct. Funct. 224, 1885–1895 (2019).

    Article  PubMed  Google Scholar 

  38. Barch, D. M. et al. Hippocampal volume and depression among young children. Psychiatry Res. Neuroimaging 288, 21–28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Barch, D. M., Harms, M. P., Tillman, R., Hawkey, E. & Luby, J. L. Early childhood depression, emotion regulation, episodic memory, and hippocampal development. J. Abnorm. Psychol. 128, 81–95 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Barch, D. M., Gaffrey, M. S., Botteron, K. N., Belden, A. C. & Luby, J. L. Functional brain activation to emotionally valenced faces in school-aged children with a history of preschool-onset major depression. Biol. Psychiatry 72, 1035–1042 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gaffrey, M. S., Luby, J. L., Botteron, K., Repovs, G. & Barch, D. M. Default mode network connectivity in children with a history of preschool onset depression. J. Child Psychol. Psychiatry 53, 964–972 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Perino, M. T. et al. Attention alterations in pediatric anxiety: evidence from behavior and neuroimaging. Biol. Psychiatry 89, 726–734 (2021).

    Article  PubMed  Google Scholar 

  43. Sylvester, C. M. et al. Resting state functional connectivity of the ventral attention network in children with a history of depression or anxiety. J. Am. Acad. Child Adolesc. Psychiatry 52, 1326–1336.e5 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ryff, C. D. & Singer, B. H. Best news yet on the six-factor model of well-being. Soc. Sci. Res. 35, 1103–1119 (2006).

    Article  Google Scholar 

  45. Soh, S. E. et al. The methodology of the GUSTO cohort study: a novel approach in studying pediatric allergy. Asia Pac. Allergy 2, 144–148 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Du, J., Younes, L. & Qiu, A. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images. NeuroImage 56, 162–173 (2011).

    Article  PubMed  Google Scholar 

  47. Tan, M. & Qiu, A. Large deformation multiresolution diffeomorphic metric mapping for multiresolution cortical surfaces: a coarse-to-fine approach. IEEE Trans. Image Process. 25, 4061–4074 (2016).

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  48. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  49. Alcauter, S. et al. Development of thalamocortical connectivity during infancy and its cognitive correlations. J. Neurosci. 34, 9067–9075 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Power, J. D. et al. Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage 84, 320–341 (2014).

    Article  PubMed  Google Scholar 

  51. Shen, X. et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat. Protoc. 12, 506–518 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cecil, C. A. et al. Environmental risk, Oxytocin Receptor Gene (OXTR) methylation and youth callous–unemotional traits: a 13-year longitudinal study. Mol. Psychiatry 19, 1071–1077 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rijlaarsdam, J. et al. An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: a model approach for replication. Epigenetics 11, 140–149 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is supported by STI 2030—Major Projects (No. 2022ZD0209000) (A.Q.) and the Singapore National Research Foundation under its Translational and Clinical Research (TCR) Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (NMRC), Singapore- NMRC/TCR/004-NUS/2008 (A.Q., Y.-S.C.), NMRC/TCR/012-NUHS/2014 (A.Q., Y.-S.C.). Additional funding is provided by the National Research Foundation, Singapore, and the Agency for Science Technology and Research (A*STAR), Singapore, under its Prenatal/Early Childhood Grant (grant H22P0M0007) (A.Q.), the Canadian Institutes of Health Research (359912, 365309 and 231614) (A.W.) and the Fonds de la recherche en santé du Québec (FRSQ; grant 22418) (A.W.).

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by A.Q. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication. A.Q. and C.S. contributed to brain image analysis and statistical analysis. M.L.-V. and E.S. contributed to CFA. A.Q. and Y.-S.C. contributed to the fund acquisition for the GUSTO data collection. A.Q., T.W. and A.W. contributed to the initial manuscript writing and revision and interpretation of data.

Corresponding author

Correspondence to Anqi Qiu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Saara Nolvi, Androniki Raftogianni and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2, Tables 1–8 and Discussion.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, A., Shen, C., López-Vicente, M. et al. Maternal positive mental health during pregnancy impacts the hippocampus and functional brain networks in children. Nat. Mental Health 2, 320–327 (2024). https://doi.org/10.1038/s44220-024-00202-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-024-00202-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing