Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial–rhythmic network as a biomarker of familial risk for psychotic bipolar disorder

Abstract

Neuronal rhythms with different temporospatial dynamics are prominent signatures of brain operation. Yet, the synchronous coupling across multiple rhythms and spatially distributed subsystems, as well as its role in brain cognition and disease, remains mysterious. Here we proposed a conceptually new framework to construct the large-scale spatial–rhythmic network (SRN) and apply it to case–control P300 electroencephalogram datasets. Results show that SRN configurations are essential substrates of attentional allocation and immediate memory for healthy controls (N = 235), yielding prominent inter-rhythmic interactions between the δ-frontoparietal/δ-limbic network and other rhythmic subnetworks during P300 generation. Importantly, SRN deviances shared by patients with bipolar disorder (N = 188) and their first-degree relatives (N = 201) might be putative electrophysiological biomarkers for clinical screening of individuals at high familial risk of disease onset. The findings emphasize that configurations of SRNs have a previously unrecognized role in cognitive (dys)functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of SRN construction.
Fig. 2: Differences in ERP, SRN topologies and network properties between the target (n = 200) and standard tones (n = 200).
Fig. 3: Relationship between large-scale SRN and P300 amplitudes of healthy people (n = 200).
Fig. 4: Disease-specific changes of the large-scale SRN.

Similar content being viewed by others

Data availability

The datasets used in this work can be found at the National Institute of Mental Health Data Archive (https://nda.nih.gov/). The data are available on NDA through collection ID 2274.

Code availability

The MEMD algorithm that performed on Python 3.7 (https://www.python.org/) is available on the mariogrune GitHub (https://github.com/mariogrune). The EEG pre-processing toolboxes are freely available (EEGLAB v2020.0, https://sccn.ucsd.edu/eeglab/index.php, and REST_v1.2_20200818, https://github.com/webrain2018/REST). Large-scale SRN properties were computed by the Brain Connectivity Toolbox (www.nitrc.org/projects/bct/). The S estimator and statistical analyses including correlation analysis and t-test were conducted using MATLAB R2018b (https://ww2.mathworks.cn/products/matlab.html). The visualization of subnetwork distribution images was conducted using BrainNetViewer 1.7 (https://www.nitrc.org/projects/bnv/). The statistical visualization of P300 amplitude and network properties was conducted using GraphPad Prism 8.3 (https://www.graphpad.com/).

References

  1. Buzsáki, G. Rhythms of the Brain (Oxford Univ. Press, 2006).

  2. Dahl, M. J., Mather, M. & Werkle-Bergner, M. Noradrenergic modulation of rhythmic neural activity shapes selective attention. Trends Cogn. Sci. 26, 38–52 (2022).

    Article  PubMed  Google Scholar 

  3. Peng, M. et al. Effects of brain network segregation and integration on motor imagery sensorimotor rhythm. Bacomics 2, 2147404 (2023).

    Google Scholar 

  4. Aron, L. & Yankner, B. A. Neural synchronization in Alzheimer’s disease. Nature 540, 207–208 (2016).

    Article  PubMed  Google Scholar 

  5. Buzsáki, G. & Watson, B. O. Brain rhythms and neural syntax: implications for efficient coding of cognitive content and neuropsychiatric disease. Dialogues Clin. Neurosci. 14, 345–367 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bernardi, G. et al. Regional delta waves in human rapid eye movement sleep. J. Neurosci. 39, 2686–2697 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Herweg, N. A., Solomon, E. A. & Kahana, M. J. Theta oscillations in human memory. Trends Cogn. Sci. 24, 208–227 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peylo, C., Hilla, Y. & Sauseng, P. Cause or consequence? Alpha oscillations in visuospatial attention. Trends Neurosci. 44, 705–713 (2021).

    Article  PubMed  Google Scholar 

  9. Engel, A. K. & Fries, P. Beta-band oscillations—signalling the status quo? Curr. Opin. Neurobiol. 20, 156–165 (2010).

    Article  PubMed  Google Scholar 

  10. Pellegrini, F., Hawellek, D. J., Pape, A.-A., Hipp, J. F. & Siegel, M. Motion coherence and luminance contrast interact in driving visual gamma-band activity. Cereb. Cortex 31, 1622–1631 (2021).

    Article  PubMed  Google Scholar 

  11. Palva, J. M., Palva, S. & Kaila, K. Phase synchrony among neuronal oscillations in the human cortex. J. Neurosci. 25, 3962–3972 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lakatos, P. et al. An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. J. Neurophysiol. 94, 1904–1911 (2005).

    Article  PubMed  Google Scholar 

  13. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14, 506–515 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Aru, J. et al. Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015).

    Article  PubMed  Google Scholar 

  15. Reinhart, R. M. G. & Nguyen, J. A. Working memory revived in older adults by synchronizing rhythmic brain circuits. Nat. Neurosci. 22, 820–827 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jones, K. T., Johnson, E. L. & Berryhill, M. E. Frontoparietal theta-gamma interactions track working memory enhancement with training and tDCS. NeuroImage 211, 116615 (2020).

    Article  PubMed  Google Scholar 

  17. Hamidi, M., Slagter, H., Tononi, G. & Postle, B. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Front. Integr. Neurosci. 3, 14 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chen, B., Ciria, L. F., Hu, C. & Ivanov, P. C. Ensemble of coupling forms and networks among brain rhythms as function of states and cognition. Commun. Biol. 5, 82 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pascual-Marqui, R. D. Standardized low resolution brain electromagnetic tomography (SLORETA): technical details. Methods Find. Exp. Clin. Pharmacol. 24, 5–12 (2002).

    PubMed  Google Scholar 

  20. Park, C., Looney, D., ur Rehman, N., Ahrabian, A. & Mandic, D. P. Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans. Neural Syst. Rehabil. Eng. 21, 10–22 (2012).

    Article  PubMed  Google Scholar 

  21. Gupta, A. et al. Recognition of multi-cognitive tasks from EEG signals using EMD methods. Neural Comput. Appl. https://doi.org/10.1007/s00521-022-07425-9 (2022).

  22. Kaleem, M., Gurve, D., Guergachi, A. & Krishnan, S. Patient-specific seizure detection in long-term EEG using signal-derived empirical mode decomposition (EMD)-based dictionary approach. J. Neural Eng. 15, 056004 (2018).

    Article  PubMed  Google Scholar 

  23. Rehman, N. & Mandic, D. P. Multivariate empirical mode decomposition. Proc. R. Soc. A 466, 1291–1302 (2010).

    Article  Google Scholar 

  24. Bressler, S. L. & Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn. Sci. 14, 277–290 (2010).

    Article  PubMed  Google Scholar 

  25. Park, H.-J. & Friston, K. Structural and functional brain networks: from connections to cognition. Science 342, 1238411 (2013).

    Article  PubMed  Google Scholar 

  26. Yi, C. et al. Constructing EEG large-scale cortical functional network connectivity based on brain atlas by S estimator. IEEE Trans. Cogn. Dev. Syst. 13, 769–778 (2020).

    Article  Google Scholar 

  27. Yi, C. et al. A novel method for constructing EEG large-scale cortical dynamical functional network connectivity (dFNC): WTCS. IEEE Trans. Cybern. 52, 12869–12881 (2022).

  28. Picton, T. W. The P300 wave of the human event-related potential. J. Clin. Neurophysiol. 9, 456–479 (1992).

    Article  PubMed  Google Scholar 

  29. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Polich, J. Updating P300: an integrative theory of P3a and P3b. Clin. Neurophysiol. 118, 2128–2148 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hall, M. H. et al. Are auditory P300 and duration MMN heritable and putative endophenotypes of psychotic bipolar disorder? A Maudsley Bipolar Twin and Family Study. Psychol. Med. 39, 1277–1287 (2009).

    Article  PubMed  Google Scholar 

  32. Başar, E. & Güntekin, B. Review of delta, theta, alpha, beta, and gamma response oscillations in neuropsychiatric disorders. Clin. Neurophysiol. 62, 303–341 (2013).

    Google Scholar 

  33. Chen, S. S. et al. Impaired frontal synchronization of spontaneous magnetoencephalographic activity in patients with bipolar disorder. Neurosci. Lett. 445, 174–178 (2008).

    Article  PubMed  Google Scholar 

  34. Howells, F. M. et al. Electroencephalographic delta/alpha frequency activity differentiates psychotic disorders: a study of schizophrenia, bipolar disorder and methamphetamine-induced psychotic disorder. Transl. Psychiatr. 8, 75 (2018).

    Article  Google Scholar 

  35. Morgan, S. E. et al. Cortical patterning of abnormal morphometric similarity in psychosis is associated with brain expression of schizophrenia-related genes. Proc. Natl. Acad. Sci. USA 116, 9604–9609 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  PubMed  Google Scholar 

  37. Brain Connectivity Toolbox. NITRC https://www.nitrc.org/projects/bct/ (2019).

  38. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  39. Li, F. et al. Inter-subject P300 variability relates to the efficiency of brain networks reconfigured from resting- to task-state: evidence from a simultaneous event-related EEG–fMRI study. NeuroImage 205, 116285 (2020).

    Article  PubMed  Google Scholar 

  40. Polich, J. Clinical application of the P300 event-related brain potential. Phys. Med. Rehab. Clinics 15, 133–161 (2004).

    Article  Google Scholar 

  41. Başar-Eroglu, C., Başar, E., Demiralp, T. & Schürmann, M. P300-response: possible psychophysiological correlates in delta and theta frequency channels. A review. Int. J. Psychophysiol. 13, 161–179 (1992).

    Article  PubMed  Google Scholar 

  42. Si, Y. et al. Predicting individual decision-making responses based on the functional connectivity of resting-state EEG. J. Neural Eng. 16, 066025 (2019).

    Article  PubMed  Google Scholar 

  43. Atagün, M. İ. Brain oscillations in bipolar disorder and lithium-induced changes. Neuropsychiatr. Dis. Treat. 12, 589 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Calhoun, V. D. et al. Exploring the psychosis functional connectome: aberrant intrinsic networks in schizophrenia and bipolar disorder. Front. Psychiatry 2, 75 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kim, D. J. et al. Disturbed resting state EEG synchronization in bipolar disorder: a graph-theoretic analysis. NeuroImage Clin. 2, 414–423 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Harmony, T. The functional significance of delta oscillations in cognitive processing. Front. Integr. Neurosci. 7, 83 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Smoller, J. W. & Finn, C. T. Family, twin, and adoption studies of bipolar disorder. Am. J. Med. Genet. C. Semin. Med. Genet. 123C, 48–58 (2003).

    Article  Google Scholar 

  48. Pittman-Polletta, B. R., Kocsis, B., Vijayan, S., Whittington, M. A. & Kopell, N. J. Brain rhythms connect impaired inhibition to altered cognition in schizophrenia. Biol. Psychiatry 77, 1020–1030 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Smart, O. L., Tiruvadi, V. R. & Mayberg, H. S. Multimodal approaches to define network oscillations in depression. Biol. Psychiatry 77, 1061–1070 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Laursen, T. M., Agerbo, E. & Pedersen, C. B. Bipolar disorder, schizoaffective disorder, and schizophrenia overlap: a new comorbidity index. J. Clin. Psychiatry 70, 1432–1438 (2009).

    Article  PubMed  Google Scholar 

  51. Schulze, T. G. et al. Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. World J. Biol. Psychiatry 15, 200–208 (2014).

    Article  PubMed  Google Scholar 

  52. Tamminga, C. A. et al. Clinical phenotypes of psychosis in the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP). Am. J. Psychiat. 170, 1263–1274 (2013).

    Article  PubMed  Google Scholar 

  53. Bipolar & Schizophrenia Consortium for Parsing Intermediate Phenotypes (B-SNIP 1). NIMH Data Archive https://nda.nih.gov/edit_collection.html?id=2274 (2014).

  54. Getting access to shared data. NIMH Data Archive https://nda.nih.gov/nda/access-data-info.html (no date).

  55. Yao, D. A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol. Meas. 22, 693 (2001).

    Article  PubMed  Google Scholar 

  56. Huang, N. E. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A 454, 903–995 (1998).

    Article  Google Scholar 

  57. MEMD-Python-. GitHub https://github.com/mariogrune/MEMD-Python- (2018).

  58. Zhou, Z. et al. Prediction and classification of sleep quality based on phase synchronization related whole-brain dynamic connectivity using resting state fMRI. NeuroImage 221, 117190 (2020).

    Article  PubMed  Google Scholar 

  59. Welch, P. The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoustics 15, 70–73 (1967).

    Article  Google Scholar 

  60. Singh, P. & Pachori, R. B. Classification of focal and nonfocal EEG signals using features derived from Fourier-based rhythms. J. Mech. Med. Biol. 17, 1740002 (2017).

    Article  Google Scholar 

  61. Jiang, L. et al. Information transmission velocity-based dynamic hierarchical brain networks. NeuroImage 270, 119997 (2023).

    Article  PubMed  Google Scholar 

  62. Gao, M. et al. Multimodal brain connectome-based prediction of suicide risk in people with late-life depression. Nat. Mental Health 1, 100–113 (2023).

    Article  Google Scholar 

  63. Jiang, L. et al. Predicting the long-term after-effects of rTMS in autism spectrum disorder using temporal variability analysis of scalp EEG. J. Neural Eng. 19, 056044 (2022).

    Article  Google Scholar 

  64. Sakkalis, V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput. Biol. Med. 41, 1110–1117 (2011).

Download references

Acknowledgements

This work was supported by the STI 2030-Major Projects (grant no. 2022ZD0211400 to F.L.; no. 2022ZD0208500 to D.Y.; no. 2022ZD0208900 to Y.L.), the National Natural Science Foundation of China (no. 62103085 to F.L.; no. U19A2082 to P.X.), the Key R&D projects of Science & Technology Department of Sichuan Province (no. 23ZDYF0961 to L.Y.) and the Scientific Research Foundation of Sichuan Provincial People’s Hospital (no. 2021LY21 to L.Y.).

Author information

Authors and Affiliations

Authors

Contributions

P.X. conceived and designed the study. P.X., F.L., D.D. and D.Y. supervised the work. S.G., S.B.E. and D.D. contributed to the data acquisition. L.J., Y.L. and R.H. analysed and interpreted the data. L.J. and C.Y. performed the statistical analyses. Q.Y. created the figures. L.J. wrote the manuscript. P.X., F.L., D.Y., S.G., S.B.E., D.D. and L.Y. critically revised the paper for important intellectual content.

Corresponding authors

Correspondence to Dezhong Yao, Debo Dong, Fali Li or Peng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Fleur Howells, Xiao Hu and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results 1–3, Figs. 1–4 and Tables 1–4.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Liang, Y., Genon, S. et al. Spatial–rhythmic network as a biomarker of familial risk for psychotic bipolar disorder. Nat. Mental Health 1, 887–899 (2023). https://doi.org/10.1038/s44220-023-00143-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00143-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing