Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Theta oscillations and minor hallucinations in Parkinson’s disease reveal decrease in frontal lobe functions and later cognitive decline

Abstract

Cognitive decline and hallucinations are common and debilitating non-motor symptoms, usually occurring during later phases of Parkinson’s disease (PD). Minor hallucinations (MH) appear early in the disease course and have been suggested to predict cognitive impairment and decline in PD, however, this has not been well-established by clinical research. Here, we investigated whether, in the absence of dementia, patients with PD and MH (without differences in frontal–subcortical and posterior cognitive functions) show altered brain oscillations and whether such MH-related electrophysiological changes are associated with cognitive impairments that increase over time. Combining model-driven electroencephalography analysis with neuropsychiatric and neuropsychological examinations in 75 patients with PD, we reveal enhanced frontal theta oscillations in patients with PD suffering from MH and link these oscillatory changes with lower cognitive frontal–subcortical functions. Neuropsychological follow-up examinations five years later revealed a stronger decline in frontal–subcortical functions in patients with MH, anticipated by stronger frontal theta alterations measured during the first assessment, defining an MH- and theta-oscillation-based early marker of a cognitive decline in PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the study.
Fig. 2: Prevalence of MH in PD.
Fig. 3: Association between frontal–subcortical cognitive functions and frontal theta power and center frequency in PD-MH.
Fig. 4: Longitudinal progression of the frontal–subcortical cognitive functions.
Fig. 5: Frontal theta power during the first assessment anticipates cognitive decline occurring over 5 years.

Similar content being viewed by others

Data availability

Data are available here: https://gitlab.epfl.ch/fbernasc/pd_mh_eeg_cognition.git.

Code availability

Codes for the analyses are available here: https://gitlab.epfl.ch/fbernasc/pd_mh_eeg_cognition.git.

References

  1. Kalia, L. V. & Lang, A. E. Parkinson’s disease. Lancet 386, 896–912 (2015).

    Article  PubMed  Google Scholar 

  2. Dorsey, E. R. et al. Global, regional, and national burden of Parkinson’s disease, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 17, 939–953 (2018).

    Article  Google Scholar 

  3. Postuma, R. B. & Berg, D. Advances in markers of prodromal Parkinson disease. Nat. Rev. Neurol. 12, 622–634 (2016).

    Article  PubMed  Google Scholar 

  4. Fénelon, G., Soulas, T., Zenasni, F. & De Langavant, L. C. The changing face of Parkinson’s disease-associated psychosis: a cross-sectional study based on the new NINDS-NIMH criteria. Mov. Disord. 25, 755–759 (2010).

    Article  PubMed Central  Google Scholar 

  5. Lenka, A., Pagonabarraga, J., Pal, P. K., Bejr-Kasem, H. & Kulisvesky, J. Minor hallucinations in Parkinson disease: A subtle symptom with major clinical implications. Neurology https://doi.org/10.1212/WNL.0000000000007913 (2019).

  6. Ffytche, D. H. et al. The psychosis spectrum in Parkinson disease. Nat. Rev. Neurol. 13, 81–95 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Aarsland, D. et al. Parkinson disease-associated cognitive impairment. Nat. Rev. Dis. Prim. 7, 47 (2021).

    Article  PubMed  Google Scholar 

  8. Levin, J., Hasan, A. & Höglinger, G. U. Psychosis in Parkinson’s disease: identification, prevention and treatment. J. Neural Transm. 123, 45–50 (2016).

    Article  PubMed  Google Scholar 

  9. Diederich, N. J., Fénelon, G., Stebbins, G. & Goetz, C. G. Hallucinations in Parkinson disease. Nat. Rev. Neurol. 5, 331–342 (2009).

    Article  PubMed  Google Scholar 

  10. Forsaa, E. B., Larsen, J. P., Wentzel-Larsen, T. & Alves, G. What predicts mortality in Parkinson disease?: a prospective population-based long-term study. Neurology 75, 1270–1276 (2010).

    Article  PubMed  Google Scholar 

  11. Marinus, J., Zhu, K., Marras, C., Aarsland, D. & van Hilten, J. J. Risk factors for non-motor symptoms in Parkinson’s disease. Lancet Neurol. 17, 559–568 (2018).

    Article  PubMed  Google Scholar 

  12. Aarsland, D., Hutchinson, M. & Larsen, J. P. Cognitive, psychiatric and motor response to galantamine in Parkinson’s disease with dementia. Int. J. Geriatr. Psychiatry 18, 937–941 (2003).

    Article  PubMed  Google Scholar 

  13. Galvin, J. E., Pollack, J. & Morris, J. C. Clinical phenotype of Parkinson disease dementia. Neurology 67, 1605–1611 (2006).

    Article  PubMed  Google Scholar 

  14. Uc, E. Y. et al. Incidence of and risk factors for cognitive impairment in an early Parkinson disease clinical trial cohort. Neurology 73, 1469–1477 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anang, J. B. M. et al. Predictors of dementia in Parkinson disease: a prospective cohort study. Neurology 83, 1253–1260 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Goetz, C. G., Emre, M. & Dubois, B. Parkinson’s disease dementia: definitions, guidelines, and research perspectives in diagnosis. Ann. Neurol. 64(Suppl 2), S81–S92 (2008).

    PubMed  Google Scholar 

  17. Aarsland, D., Larsen, J. P., Tandberg, E. & Laake, K. Predictors of nursing home placement in Parkinson’s disease: a population-based, prospective study. J. Am. Geriatr. Soc. 48, 938–942 (2000).

    Article  PubMed  Google Scholar 

  18. Gonzalez, M. C., Dalen, I., Maple-Grødem, J., Tysnes, O.-B. & Alves, G. Parkinson’s disease clinical milestones and mortality. NPJ Parkinsons Dis. 8, 1–5 (2022).

    Article  Google Scholar 

  19. Collerton, D., Perry, E. & McKeith, I. Why people see things that are not there: a novel perception and attention deficit model for recurrent complex visual hallucinations. Behav. Brain Sci. 28, 737–757 (2005).

    Article  PubMed  Google Scholar 

  20. Goldman, J. G. et al. Visuoperceptive region atrophy independent of cognitive status in patients with Parkinson’s disease with hallucinations. Brain J. Neurol. 137, 849–859 (2014).

    Article  Google Scholar 

  21. Hobson, J. A., Pace-Schott, E. F. & Stickgold, R. Dreaming and the brain: toward a cognitive neuroscience of conscious states. Behav. Brain Sci. 23, 793–842 (2000).

    Article  PubMed  Google Scholar 

  22. Ibarretxe-Bilbao, N. et al. Differential progression of brain atrophy in Parkinson’s disease with and without visual hallucinations. J. Neurol. Neurosurg. Psychiatry 81, 650–657 (2010).

    Article  PubMed  Google Scholar 

  23. Shine, J. M., Halliday, G. M., Naismith, S. L. & Lewis, S. J. G. Visual misperceptions and hallucinations in Parkinson’s disease: dysfunction of attentional control networks? Mov. Disord. 26, 2154–2159 (2011).

    Article  PubMed  Google Scholar 

  24. Watanabe, H. et al. Cortical and subcortical brain atrophy in Parkinson’s disease with visual hallucination. Mov. Disord. 28, 1732–1736 (2013).

    Article  PubMed  Google Scholar 

  25. Ramirez-Ruiz, B., Junque, C., Marti, M.-J., Valldeoriola, F. & Tolosa, E. Cognitive changes in Parkinson’s disease patients with visual hallucinations. Dement. Geriatr. Cogn. Disord. 23, 281–288 (2007).

    Article  PubMed  Google Scholar 

  26. Obeso, J. A., Rodriguez-Oroz, M. C., Stamelou, M., Bhatia, K. P. & Burn, D. J. The expanding universe of disorders of the basal ganglia. Lancet 384, 523–531 (2014).

    Article  PubMed  Google Scholar 

  27. Shine, J. M. et al. The role of dysfunctional attentional control networks in visual misperceptions in Parkinson’s disease. Hum. Brain Mapp. 35, 2206–2219 (2014).

    Article  PubMed  Google Scholar 

  28. Fénelon, G., Mahieux, F., Huon, R. & Ziégler, M. Hallucinations in Parkinson’s disease: prevalence, phenomenology and risk factors. Brain J. Neurol. 123, 733–745 (2000).

    Article  Google Scholar 

  29. Ravina, B. et al. Diagnostic criteria for psychosis in Parkinson’s disease: report of an NINDS, NIMH work group. Mov. Disord. Off. 22, 1061–1068 (2007).

    Article  Google Scholar 

  30. Pagonabarraga, J. et al. Neural correlates of minor hallucinations in non-demented patients with Parkinson’s disease. Parkinsonism Relat. Disord. 20, 290–296 (2014).

    Article  PubMed  Google Scholar 

  31. Bernasconi, F. et al. Robot-induced hallucinations in Parkinson’s disease depend on altered sensorimotor processing in fronto-temporal network. Sci. Transl. Med. 13, eabc8362 (2021).

    Article  PubMed  Google Scholar 

  32. Bejr-Kasem, H. et al. Disruption of the default mode network and its intrinsic functional connectivity underlies minor hallucinations in Parkinson’s disease. Mov. Disord. Off. 34, 78–86 (2019).

    Article  Google Scholar 

  33. Bejr-Kasem, H. et al. Minor hallucinations reflect early gray matter loss and predict subjective cognitive decline in Parkinson’s disease. Eur. J. Neurol. 28, 438–447 (2021).

    Article  PubMed  Google Scholar 

  34. Llebaria, G. et al. Neuropsychological correlates of mild to severe hallucinations in Parkinson’s disease. Mov. Disord. 25, 2785–2791 (2010).

    Article  PubMed  Google Scholar 

  35. Bosboom, J. L. W. et al. Resting state oscillatory brain dynamics in Parkinson’s disease: an MEG study. Clin. Neurophysiol. 117, 2521–2531 (2006).

    Article  PubMed  Google Scholar 

  36. Geraedts, V. J. et al. Clinical correlates of quantitative EEG in Parkinson disease: a systematic review. Neurology 91, 871–883 (2018).

    Article  PubMed  Google Scholar 

  37. Hassan, M. et al. Functional connectivity disruptions correlate with cognitive phenotypes in Parkinson’s disease. Neuroimage Clin. 14, 591–601 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Olde Dubbelink, K. T. E. et al. Cognitive decline in Parkinson’s disease is associated with slowing of resting-state brain activity: a longitudinal study. Neurobiol. Aging 34, 408–418 (2013).

    Article  PubMed  Google Scholar 

  39. Hinrichs, H. et al. Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci. Rep. 10, 5218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hirschmann, J. et al. Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson’s disease. Neuroimage 55, 1159–1168 (2011).

    Article  PubMed  Google Scholar 

  41. Hirschmann, J. et al. A direct relationship between oscillatory subthalamic nucleus-cortex coupling and rest tremor in Parkinson’s disease. Brain J. Neurol. 136, 3659–3670 (2013).

    Article  Google Scholar 

  42. Kühn, A. A. et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Exp. Neurol. 215, 380–387 (2009).

    Article  PubMed  Google Scholar 

  43. Oswal, A. et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson’s disease. Brain J. Neurol. 139, 1482–1496 (2016).

    Article  Google Scholar 

  44. Tinkhauser, G. et al. The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain J. Neurol. 140, 1053–1067 (2017).

    Article  Google Scholar 

  45. Babiloni, C. et al. Abnormal cortical neural synchronization mechanisms in quiet wakefulness are related to motor deficits, cognitive symptoms, and visual hallucinations in Parkinson’s disease patients: an electroencephalographic study. Neurobiol. Aging 91, 88–111 (2020).

    Article  PubMed  Google Scholar 

  46. Bonanni, L. et al. EEG comparisons in early Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease with dementia patients with a 2-year follow-up. Brain J. Neurol. 131, 690–705 (2008).

    Article  Google Scholar 

  47. Donoghue, T. et al. Parameterizing neural power spectra into periodic and aperiodic components. Nat. Neurosci. 23, 1655–1665 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Goetz, C. G. et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov. Disord. 23, 2129–2170 (2008).

    Article  PubMed  Google Scholar 

  49. Pagonabarraga, J. et al. Minor hallucinations occur in drug-naive Parkinson’s disease patients, even from the premotor phase. Mov. Disord. 31, 45–52 (2016).

    Article  PubMed  Google Scholar 

  50. Fénelon, G., Soulas, T., Langavant, L. C., de, Trinkler, I. & Bachoud-Lévi, A.-C. Feeling of presence in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 82, 1219–1224 (2011).

    Article  PubMed  Google Scholar 

  51. Wood, R. A., Hopkins, S. A., Moodley, K. K. & Chan, D. Fifty percent prevalence of extracampine hallucinations in Parkinson’s disease patients. Front. Neurol. 6, 263 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kataoka, H. & Ueno, S. Predictable risk factors for the feeling of presence in patients with Parkinson’s disease. Mov. Disord. Clin. Pract. 2, 407–412 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Stern, A. F. The Hospital Anxiety and Depression Scale. Occup. Med. 64, 393–394 (2014).

    Article  Google Scholar 

  54. Starkstein, S. E. et al. Reliability, validity, and clinical correlates of apathy in Parkinson’s disease. J. Neuropsychiatry Clin. Neurosci. 4, 134–139 (1992).

    Article  PubMed  Google Scholar 

  55. Lenka, A., Hegde, S., Jhunjhunwala, K. R. & Pal, P. K. Interactions of visual hallucinations, rapid eye movement sleep behavior disorder and cognitive impairment in Parkinson’s disease: A review. Parkinsonism Relat. Disord. 22, 1–8 (2016).

    Article  PubMed  Google Scholar 

  56. Sasai, T., Matsuura, M. & Inoue, Y. Electroencephalographic findings related with mild cognitive impairment in idiopathic rapid eye movement sleep behavior disorder. Sleep 36, 1893–1899 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Postuma, R. B. et al. A single-question screen for REMsleep behavior disorder: a multicenter validation study. Mov. Disord. 27, 913–916 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Stiasny-Kolster, K. et al. The REM sleep behavior disorder screening questionnaire–a new diagnostic instrument. Mov. Disord. 22, 2386–2393 (2007).

    Article  PubMed  Google Scholar 

  59. Fernández de Bobadilla, R. et al. Parkinson’s disease-cognitive rating scale: psychometrics for mild cognitive impairment. Mov. Disord. 28, 1376–1383 (2013).

    Article  PubMed  Google Scholar 

  60. Asch, N. et al. Independently together: subthalamic theta and beta opposite roles in predicting Parkinson’s tremor. Brain Commun. 2, fcaa074 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Beudel, M. et al. Oscillatory beta power correlates with akinesia-rigidity in the Parkinsonian subthalamic nucleus. Mov. Disord. 32, 174–175 (2017).

    Article  PubMed  Google Scholar 

  62. Burn, D. J. et al. Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 77, 585–589 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Alonso-Frech, F. et al. Slow oscillatory activity and levodopa-induced dyskinesias in Parkinson’s disease. Brain J. Neurol. 129, 1748–1757 (2006).

    Article  Google Scholar 

  64. Rodriguez-Oroz, M. C. et al. Initial clinical manifestations of Parkinson’s disease: features and pathophysiological mechanisms. Lancet Neurol. 8, 1128–1139 (2009).

    Article  PubMed  Google Scholar 

  65. He, W. et al. Co-increasing neuronal noise and beta power in the developing brain. Preprint at bioRxiv https://doi.org/10.1101/839258 (2019).

  66. Tran, T. T., Rolle, C. E., Gazzaley, A. & Voytek, B. Linked sources of neural noise contribute to age-related cognitive decline. J. Cogn. Neurosci. 32, 1813–1822 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Voytek, B. et al. Age-related changes in 1/f neural electrophysiological noise. J. Neurosci. 35, 13257–13265 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Whitford, T. J. et al. Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum. Brain Mapp. 28, 228–237 (2007).

    Article  PubMed  Google Scholar 

  69. Cellier, D., Riddle, J., Petersen, I. & Hwang, K. The development of theta and alpha neural oscillations from ages 3 to 24 years. Dev. Cogn. Neurosci. 50, 100969 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Galtier, I., Nieto, A., Lorenzo, J. N. & Barroso, J. Subjective cognitive decline and progression to dementia in Parkinson’s disease: a long-term follow-up study. J. Neurol. 266, 745–754 (2019).

    Article  PubMed  Google Scholar 

  71. Chandler, J. M. et al. Characteristics of Parkinson’s disease in patients with and without cognitive impairment. J. Parkinsons Dis. 11, 1381–1392 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Leroi, I., McDonald, K., Pantula, H. & Harbishettar, V. Cognitive impairment in Parkinson disease: impact on quality of life, disability, and caregiver burden. J. Geriatr. Psychiatry Neurol. 25, 208–214 (2012).

    Article  PubMed  Google Scholar 

  73. Aarsland, D. et al. Risk of dementia in Parkinson’s disease: a community-based, prospective study. Neurology 56, 730–736 (2001).

    Article  PubMed  Google Scholar 

  74. Walker, Z., Possin, K. L., Boeve, B. F. & Aarsland, D. Lewy body dementias. Lancet 386, 1683–1697 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Morita, A., Kamei, S. & Mizutani, T. Relationship between slowing of the EEG and cognitive impairment in Parkinson disease. J. Clin. Neurophysiol. 28, 384–387 (2011).

    PubMed  Google Scholar 

  76. Soikkeli, R., Partanen, J., Soininen, H., Pääkkönen, A. & Riekkinen, P. Slowing of EEG in Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol. 79, 159–165 (1991).

    Article  PubMed  Google Scholar 

  77. Stoffers, D. et al. Slowing of oscillatory brain activity is a stable characteristic of Parkinson’s disease without dementia. Brain 130, 1847–1860 (2007).

    Article  PubMed  Google Scholar 

  78. Wiesman, A. I. et al. A sagittal gradient of pathological and compensatory effects of neurophysiological slowing in Parkinson’s disease. 2022.08.05.22278436 Preprint at medRxiv https://doi.org/10.1101/2022.08.05.22278436 (2022).

  79. Buckner, R. L. Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44, 195–208 (2004).

    Article  PubMed  Google Scholar 

  80. Steriade, M., Datta, S., Paré, D., Oakson, G. & Curró Dossi, R. C. Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J. Neurosci. 10, 2541–2559 (1990).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jensen, O., Gelfand, J., Kounios, J. & Lisman, J. E. Oscillations in the alpha band (9-12 Hz) increase with memory load during retention in a short-term memory task. Cereb. Cortex 12, 877–882 (2002).

    Article  PubMed  Google Scholar 

  82. Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. J. Neurosci. 21, 3175–3183 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Makeig, S., Debener, S., Onton, J. & Delorme, A. Mining event-related brain dynamics. Trends Cogn. Sci. 8, 204–210 (2004).

    Article  PubMed  Google Scholar 

  84. Dhanis, H. et al. Robotically-induced hallucination triggers subtle changes in brain network transitions. NeuroImage 248, 118862 (2021).

    Article  PubMed  Google Scholar 

  85. Chung, S. J. et al. Frontal atrophy as a marker for dementia conversion in Parkinson’s disease with mild cognitive impairment. Hum. Brain Mapp. 40, 3784–3794 (2019).

    PubMed  PubMed Central  Google Scholar 

  86. Chung, S. J. et al. Factor analysis-derived cognitive profile predicting early dementia conversion in PD. Neurology 95, e1650–e1659 (2020).

    Article  PubMed  Google Scholar 

  87. Lee, J. E. et al. Exploratory analysis of neuropsychological and neuroanatomical correlates of progressive mild cognitive impairment in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 85, 7–16 (2014).

    Article  PubMed  Google Scholar 

  88. Pagonabarraga, J. et al. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov. Disord. 23, 998–1005 (2008).

    Article  PubMed  Google Scholar 

  89. Williams-Gray, C. H., Foltynie, T., Brayne, C. E. G., Robbins, T. W. & Barker, R. A. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain J. Neurol. 130, 1787–1798 (2007).

    Article  Google Scholar 

  90. Goetz, C. G. et al. Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. Mov. Disord. 19, 1020–1028 (2004).

    Article  PubMed  Google Scholar 

  91. Klassen, B. T. et al. Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 77, 118–124 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Cozac, V. V. et al. Increase of EEG spectral theta power indicates higher risk of the development of severe cognitive decline in Parkinson’s disease after 3 years. Front. Aging Neurosci. 8, 284 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bejr-Kasem, H. et al. The role of attentional control over interference in minor hallucinations in Parkinson’s disease. Parkinsonism Relat. Disord. 102, 101–107 (2022).

    Article  PubMed  Google Scholar 

  94. Bernasconi, F. et al. Neuroscience robotics for controlled induction and real-time assessment of hallucinations. Nat. Protoc. 17, 2966–2989 (2022).

    Article  PubMed  Google Scholar 

  95. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21 (2004).

    Article  PubMed  Google Scholar 

  96. Chaumon, M., Bishop, D. V. M. & Busch, N. A. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J. Neurosci. Methods 250, 47–63 (2015).

    Article  PubMed  Google Scholar 

  97. Bédard, C., Kröger, H. & Destexhe, A. Does the 1/f frequency scaling of brain signals reflect self-organized critical states? Phys. Rev. Lett. 97, 118102 (2006).

    Article  PubMed  Google Scholar 

  98. Chiang, A. K. I., Rennie, C. J., Robinson, P. A., van Albada, S. J. & Kerr, C. C. Age trends and sex differences of alpha rhythms including split alpha peaks. Clin. Neurophysiol. 122, 1505–1517 (2011).

    Article  PubMed  Google Scholar 

  99. Dickson, D. W., Uchikado, H., Fujishiro, H. & Tsuboi, Y. Evidence in favor of Braak staging of Parkinson’s disease. Mov. Disord. 25(Suppl 1), S78–S82 (2010).

    Article  PubMed  Google Scholar 

  100. Ushey, K., Allaire, J. & Tang, Y. reticulate: interface to Python. R package v.1.16 (2020).

  101. Ostlund, B. et al. Spectral parameterization for studying neurodevelopment: How and why. Dev. Cogn. Neurosci. 54, 101073 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Frossard, J. & Renaud, O. Permutation tests for regression, ANOVA, and comparison of signals: the permuco package. J. Stat. Software 99, 1–32 (2021).

    Article  Google Scholar 

  103. Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29, 1165–1188 (2001).

    Article  Google Scholar 

  104. Singmann, H. & Klauer, K. C. Deductive and inductive conditional inferences: two modes of reasoning. Think. Reason. 17, 247–281 (2011).

    Article  Google Scholar 

  105. Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. & Pfister, H. UpSet: visualization of intersecting sets. IEEE Transactions on Visualization and Computer Graphics 20, 983–1992 (2014).

Download references

Acknowledgements

We thank all patients for their participation to the study. We thank Prof. Andrea Serino and Prof. Gilles Allali for their comments on earlier version of the manuscript. This research was supported by two donors advised by CARIGEST SA (Fondazione Teofilo Rossi di Montelera e di Premuda and a second one wishing to remain anonymous) to O.B.; National Center of Competence in Research (NCCR) ‘Synapsy—The Synaptic Bases of Mental Diseases’ grant number 51NF40-185897 to O.B.; Parkinson Suisse to O.B.; Bertarelli Foundation to O.B.; CIBERNED (Carlos III Institute) and FIS grant PI18/01717 to J.K.; Instituto de Salud Carlos III (ISCIII), Spain, to J.K.; PERIS, expedient number SLT008/18/00088 Generalitat de Catalunya to J. Pagonabarraga.

Author information

Authors and Affiliations

Authors

Contributions

F.B. conceptualized idea, analyzed the data and wrote paper, J.P., H.B-K, S.M-H collected data and wrote paper, J.K, O.B wrote paper. J.M. and A.H-B. collected data. All authors approved the definitive version of the manuscript.

Corresponding authors

Correspondence to Fosco Bernasconi or Olaf Blanke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Abhishek Lenka, Leonidas Stefanis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, results, Figs. 1–7 and Tables 1–8.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernasconi, F., Pagonabarraga, J., Bejr-Kasem, H. et al. Theta oscillations and minor hallucinations in Parkinson’s disease reveal decrease in frontal lobe functions and later cognitive decline. Nat. Mental Health 1, 477–488 (2023). https://doi.org/10.1038/s44220-023-00080-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00080-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing