Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A longitudinal study of late-life psychosis and incident dementia and the potential effects of race and cognition

Abstract

Later-life psychotic symptoms are meaningful and are associated with adverse outcomes. Psychosis is an important domain in mild behavioural impairment (MBI), a syndrome that incorporates later-life emergent and persistent neuropsychiatric symptoms (NPS) in dementia-free individuals into dementia prognostication. However, MBI-psychosis-associated risk and its interaction with race has not been well quantified. Here we determined risk of incident dementia in dementia-free participants with MBI-psychosis and effect modification by race as an important factor in assessing the risk of psychosis. Data for participants with normal cognition (NC) or mild cognitive impairment (MCI) from the National Alzheimer Coordinating Centre were used. Participants with neurodevelopmental, neurological and/or longstanding psychiatric disorders were excluded. MBI-psychosis was defined by persistence of delusions and hallucinations across two consecutive visits. Kaplan–Meier curves of ten-year dementia-free survival were generated for MBI-psychosis versus no NPS before dementia diagnosis. Cox proportional hazard models were implemented to assess relative incidence rates, adjusted for cognitive status, age, sex, education, race and APOE-ε4 status. Interaction terms were included for relevant demographic variables. Similar secondary analyses utilized MBI-no-psychosis as reference. The sample consisted of 3,704 no-NPS (age = 72.8 ± 9.9; 62.7% female; 13.4% MCI) and 66 MBI-psychosis (age = 75.2 ± 9.8; 53% female; 72.7% MCI) participants. For MBI-psychosis, in reference to no NPS, the hazard ratio (HR) for incident dementia was 3.76 (CI: 2.53–5.58, p < 0.001), while for conventionally captured psychosis, the HR was 1.92 (CI: 1.58–2.33, p < 0.001). Interaction analyses revealed that in NC, those with MBI-psychosis had a 9.96-fold greater incidence of dementia than those with no NPS (CI: 3.65–27.22, p < 0.001). In MCI, the MBI-psychosis-associated dementia incidence was 3.38-fold greater than no-NPS (CI: 2.22–5.15, p < 0.001). Furthermore, MBI-psychosis-associated dementia incidence in Black participants was 7.44-fold greater than no NPS (CI: 3.54–15.65, p < 0.001), while in white participants, it was 3.18-fold greater (CI: 1.94–5.2, p < 0.001). In a secondary analysis, compared with MBI-no-psychosis (n = 2,260), MBI-psychosis had a 2.47-fold greater incidence of dementia (CI: 1.69–3.59, p < 0.001). Although psychosis is an infrequently endorsed MBI domain, when present it is associated with substantial risk for dementia. HRs differed between cognitive strata, and these differences were significantly greater when MBI-psychosis emerged in NC as opposed to MCI, emphasizing the importance of cognitive assessment at the time of symptom emergence. In addition, the relationship between MBI-psychosis and incident dementia was stronger in Black participants than in white participants. The emergence of persistent psychotic symptoms in older adults is clinically meaningful, and MBI-psychosis identifies a high-risk group for precision medicine approaches to dementia prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: KM curve of dementia-free survival and adjusted HR for incident dementia over ten years stratified by NPS groups.
Fig. 2: Forest plot of adjusted HRs for incident dementia across the strata of the interaction.
Fig. 3

Similar content being viewed by others

Data availability

Data are available from NACC upon submission of a data access request (https://naccdata.org/requesting-data/data-request-process).

Code availability

Custom R codes are available online (https://github.com/mghahrem/psychosis_and_incidentdementia).

References

  1. Steinberg, M. et al. Point and 5-year period prevalence of neuropsychiatric symptoms in dementia: the Cache County Study. Int. J. Geriatr. Psychiatry 23, 170–177 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ropacki, S. A. & Jeste, D. V. Epidemiology of and risk factors for psychosis of Alzheimer’s disease: a review of 55 studies published from 1990 to 2003. Am. J. Psychiatry 162, 2022–2030 (2005).

    Article  PubMed  Google Scholar 

  3. Fischer, C. E., Ismail, Z. & Schweizer, T. A. Delusions increase functional impairment in Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 33, 393–399 (2012).

    Article  PubMed  Google Scholar 

  4. Wilson, R. et al. Hallucinations, cognitive decline, and death in Alzheimer’s disease. Neuroepidemiology 26, 68–75 (2006).

    Article  PubMed  Google Scholar 

  5. Scarmeas, N. et al. Delusions and hallucinations are associated with worse outcome in Alzheimer disease. Arch. Neurol. 62, 1601–1608 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zahodne, L. B., Ornstein, K., Cosentino, S., Devanand, D. P. & Stern, Y. Longitudinal relationships between Alzheimer disease progression and psychosis, depressed mood, and agitation/aggression. Am. J. Geriatr. Psychiatry 23, 130–140 (2015).

    Article  PubMed  Google Scholar 

  7. Fischer, C. E. & Agüera-Ortiz, L. Psychosis and dementia: risk factor, prodrome, or cause? Int. Psychogeriatr. 30, 209–219 (2018).

    Article  PubMed  Google Scholar 

  8. Ismail, Z. et al. Psychosis in Alzheimer disease—mechanisms, genetics and therapeutic opportunities. Nat. Rev. Neurol. 18, 131–144 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cummings, J. et al. Criteria for psychosis in major and mild neurocognitive disorders: International Psychogeriatric Association (IPA) consensus clinical and research definition. Am. J. Geriatr. Psychiatry 28, 1256–1269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jeste, D. V. & Finkel, S. I. Psychosis of Alzheimer’s disease and related dementias: diagnostic criteria for a distinct syndrome. Am. J. Geriatr. Psychiatry 8, 29–34 (2000).

    Article  PubMed  Google Scholar 

  11. Fischer, C. E. et al. Revisiting criteria for psychosis in Alzheimer’s disease and related dementias: toward better phenotypic classification and biomarker research. J. Alzheimers Dis. 73, 1143–1156 (2020).

    Article  PubMed  Google Scholar 

  12. Ismail, Z. et al. Neuropsychiatric symptoms as early manifestations of emergent dementia: provisional diagnostic criteria for mild behavioral impairment. Alzheimers Dement. 12, 195–202 (2016).

    Article  PubMed  Google Scholar 

  13. Creese, B. & Ismail, Z. Mild behavioral impairment: measurement and clinical correlates of a novel marker of preclinical Alzheimer’s disease. Alzheimers Res. Ther. 14, 2 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mortby, M. E. Mild behavioral impairment: challenges facing a quickly developing evidence base. Int. Psychogeriatr. 33, 209–212 (2021).

    Article  PubMed  Google Scholar 

  15. Creese, B. et al. Mild behavioral impairment as a marker of cognitive decline in cognitively normal older adults. Am. J. Geriatr. Psychiatry 27, 823–834 (2019).

    Article  PubMed  Google Scholar 

  16. Matsuoka, T., Ismail, Z. & Narumoto, J. Prevalence of mild behavioral impairment and risk of dementia in a psychiatric outpatient clinic. J. Alzheimers Dis. 70, 505–513 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tsunoda, K. et al. Early emergence of neuropsychiatric symptoms in cognitively normal subjects and mild cognitive impairment. J. Alzheimers Dis. 73, 209–215 (2020).

    Article  PubMed  Google Scholar 

  18. Ismail, Z. et al. Mild behavioral impairment and subjective cognitive decline predict cognitive and functional decline. J. Alzheimers Dis. 80, 459–469 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wolfova, K. et al. Gender/sex differences in the association of mild behavioral impairment with cognitive aging. J. Alzheimers Dis. 88, 345–355 (2022).

    Article  PubMed  Google Scholar 

  20. McGirr, A. et al. Progression to dementia or reversion to normal cognition in mild cognitive impairment as a function of late-onset neuropsychiatric symptoms. Neurology. 98, e2132–e2139 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Taragano, F. E. et al. Risk of conversion to dementia in a mild behavioral impairment group compared to a psychiatric group and to a mild cognitive impairment group. J. Alzheimers Dis. 62, 227–238 (2018).

    Article  PubMed  Google Scholar 

  22. Kan, C. N. et al. Prevalence, clinical correlates, cognitive trajectories, and dementia risk associated with mild behavioral impairment in Asians. J. Clin. Psychiatry 83, 40123 (2022).

    Article  Google Scholar 

  23. Vellone, D. et al. Apathy and APOE in mild behavioral impairment, and risk for incident dementia. Alzheimers Dement. (N Y) 8, e12370 (2022).

    PubMed  Google Scholar 

  24. Yokoi, Y. et al. Discrete effect of each mild behavioural impairment category on dementia conversion or cognitive decline in patients with mild cognitive impairment. Psychogeriatrics 19, 591–600 (2019).

    Article  PubMed  Google Scholar 

  25. Tsamakis, K. et al. Dementia in people from ethnic minority backgrounds: disability, functioning, and pharmacotherapy at the time of diagnosis. J. Am. Med. Dir. Assoc. 22, 446–452 (2021).

    Article  PubMed  Google Scholar 

  26. Selten, J. P., van der Ven, E. & Termorshuizen, F. Migration and psychosis: a meta-analysis of incidence studies. Psychol. Med. 50, 303–313 (2020).

    Article  PubMed  Google Scholar 

  27. Pan, Y. et al. Prevalence of mild behavioural impairment domains: a meta-analysis. Psychogeriatrics 22, 84–98 (2022).

    Article  PubMed  Google Scholar 

  28. Ismail, Z. et al. The Mild Behavioral Impairment Checklist (MBI-C): a rating scale for neuropsychiatric symptoms in pre-dementia populations. J. Alzheimers Dis. 56, 929–938 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Creese, B. et al. Profile of mild behavioral impairment and factor structure of the Mild Behavioral Impairment Checklist in cognitively normal older adults. Int. Psychogeriatr. 32, 705–717 (2020).

    Article  PubMed  Google Scholar 

  30. Hu, S. et al. Validating the mild behavioral impairment checklist in a cognitive clinic: comparisons with the neuropsychiatric inventory questionnaire. J. Geriatr. Psychiatry Neurol. 36, 107–120 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dietlin, S. et al. Neuropsychiatric symptoms and risk of progression to Alzheimer’s disease among mild cognitive impairment subjects. J. Alzheimers Dis. 70, 25–34 (2019).

    Article  PubMed  Google Scholar 

  32. Brodaty, H., Sachdev, P., Koschera, A., Monk, D. & Cullen, B. Long-term outcome of late-onset schizophrenia: 5-year follow-up study. Br. J. Psychiatry 183, 213–219 (2003).

    Article  PubMed  Google Scholar 

  33. Kohler, S. et al. Cognitive decline and dementia risk in older adults with psychotic symptoms: a prospective cohort study. Am. J. Geriatr. Psychiatry 21, 119–128 (2013).

    Article  PubMed  Google Scholar 

  34. Liew, T. M. Symptom clusters of neuropsychiatric symptoms in mild cognitive impairment and their comparative risks of dementia: a cohort study of 8530 older persons. J. Am. Med. Dir. Assoc. 20, 1054e1–1054e9 (2019).

    Article  Google Scholar 

  35. Rosenberg, P. B. et al. The association of neuropsychiatric symptoms in MCI with incident dementia and Alzheimer disease. Am. J. Geriatr. Psychiatry 21, 685–695 (2013).

    Article  PubMed  Google Scholar 

  36. Peters, M. et al. Neuropsychiatric symptoms as risk factors for progression from CIND to dementia: the Cache County Study. Am. J. Geriatr. Psychiatry 21, 1116–1124 (2013).

    Article  PubMed  Google Scholar 

  37. Pink, A. et al. Neuropsychiatric symptoms, APOE epsilon4, and the risk of incident dementia: a population-based study. Neurology. 84, 935–943 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Valero, S. et al. Interaction of neuropsychiatric symptoms with APOE ε4 and conversion to dementia in MCI patients in a Memory Clinic. Sci. Rep. 10, 20058 (2020).

    Article  PubMed  Google Scholar 

  39. Palmer, B. W. et al. Are late-onset schizophrenia spectrum disorders neurodegenerative conditions? Annual rates of change on two dementia measures. J. Neuropsychiatry Clin. Neurosci. 15, 45–52 (2003).

    Article  PubMed  Google Scholar 

  40. Almeida, O. P. et al. Risk of dementia associated with psychotic disorders in later life: the health in men study (HIMS). Psychol. Med. 49, 232–242 (2019).

    Article  PubMed  Google Scholar 

  41. Stafford, J. et al. Association between risk of dementia and very late-onset schizophrenia-like psychosis: a Swedish population-based cohort study. Psychol. Med. 53, 1–9 (2021).

    PubMed  Google Scholar 

  42. Liew, T. M. Neuropsychiatric symptoms in cognitively normal older persons, and the association with Alzheimer’s and non-Alzheimer’s dementia. Alzheimers Res. Ther. 12, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Burke, S. L., Maramaldi, P., Cadet, T. & Kukull, W. Neuropsychiatric symptoms and Apolipoprotein E: associations with eventual Alzheimer’s disease development. Arch. Gerontol. Geriatr. 65, 231–238 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nagendra, J. & Snowdon, J. An Australian study of delusional disorder in late life. Int. Psychogeriatr. 32, 453–462 (2020).

    Article  PubMed  Google Scholar 

  45. Schwartz, R. C. & Blankenship, D. M. Racial disparities in psychotic disorder diagnosis: a review of empirical literature. World J. Psychiatry 4, 133–140 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Barnes, L. L. & Bennett, D. A. Alzheimer’s disease in African Americans: risk factors and challenges for the future. Health Aff. (Millwood) 33, 580–586 (2014).

    Article  PubMed  Google Scholar 

  47. Bryant, B. E., Ayana, J. & Uraina, S. C. Race as a social construct in psychiatry research and practice. JAMA Psychiatry 79, 93–94 (2021).

    Article  Google Scholar 

  48. Steptoe, A. & Zaninotto, P. Lower socioeconomic status and the acceleration of aging: an outcome-wide analysis. Proc. Natl Acad. Sci. USA 117, 14911–14917 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Avila-Rieger, J. et al. Socioeconomic status, biological aging, and memory in a diverse national sample of older US men and women. Neurology 99, e2114–e2124 (2022).

    PubMed  PubMed Central  Google Scholar 

  50. Anglin, D. M. et al. From womb to neighborhood: a racial analysis of social determinants of psychosis in the United States. Am. J. Psychiatry 178, 599–610 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Babulal, G. M. et al. The complex relationship between depression and progression to incident cognitive impairment across race and ethnicity. Alzheimers Dement. 18, 2593–2602 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Qian, W., Fischer, C. E., Schweizer, T. A. & Munoz, D. G. Association between psychosis phenotype and APOE genotype on the clinical profiles of Alzheimer’s disease. Curr. Alzheimer Res. 15, 187–194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Demichele-Sweet, M. A., Lopez, O. L. & Sweet, R. A. Psychosis in Alzheimer’s disease in the national Alzheimer’s disease coordinating center uniform data set: clinical correlates and association with apolipoprotein e. Int. J. Alzheimers Dis. 2011, 926597 (2011).

    PubMed  PubMed Central  Google Scholar 

  54. DeMichele-Sweet, M. A. A. & Sweet, R. A. Genetics of psychosis in Alzheimer disease. Curr. Genet. Med. Rep. 2, 30–38 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Ismail, Z., Nguyen, M. Q., Fischer, C. E., Schweizer, T. A. & Mulsant, B. H. Neuroimaging of delusions in Alzheimer’s disease. Psychiatry Res. 202, 89–95 (2012).

    Article  PubMed  Google Scholar 

  56. Ismail, Z. et al. Neurobiology of delusions in Alzheimer’s disease. Curr. Psychiatry Rep. 13, 211–218 (2011).

    Article  PubMed  Google Scholar 

  57. Vik-Mo, A. O., Giil, L. M., Borda, M. G., Ballard, C. & Aarsland, D. The individual course of neuropsychiatric symptoms in people with Alzheimer’s and Lewy body dementia: 12-year longitudinal cohort study. Br. J. Psychiatry 216, 43–48 (2020).

    Article  PubMed  Google Scholar 

  58. Cummings, J. et al. Pimavanserin: potential treatment for dementia-related psychosis. J. Prev. Alzheimers Dis. 5, 253–258 (2018).

    PubMed  PubMed Central  Google Scholar 

  59. Fischer, C. E. et al. Determining the impact of psychosis on rates of false-positive and false-negative diagnosis in Alzheimer’s disease. Alzheimers Dement. (N Y) 3, 385–392 (2017).

    Article  PubMed  Google Scholar 

  60. Ruthirakuhan, M., Ismail, Z., Herrmann, N., Gallagher, D. & Lanctot, K. L. Mild behavioral impairment is associated with progression to Alzheimer’s disease: a clinicopathological study. Alzheimers Dement. 18, 2199–2208 (2022).

    Article  PubMed  Google Scholar 

  61. Irwin, D. J. & Hurtig, H. I. The contribution of tau, amyloid-beta and alpha-synuclein pathology to dementia in Lewy body disorders. J. Alzheimers Dis. Parkinsonism 8, 444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Irwin, D. J. et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: a retrospective analysis. Lancet Neurol. 16, 55–65 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gill, S. et al. Using machine learning to predict dementia from neuropsychiatric symptom and neuroimaging data. J. Alzheimers Dis. 75, 277–288 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Gill, S. et al. Neural correlates of the impulse dyscontrol domain of mild behavioral impairment. Int. J. Geriatr. Psychiatry 36, 1398–1406 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Johansson, M. et al. Mild behavioral impairment and its relation to tau pathology in preclinical Alzheimer’s disease. Transl. Psychiatry. 11, 76 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Lussier, F. Z. et al. Mild behavioral impairment is associated with β-amyloid but not tau or neurodegeneration in cognitively intact elderly individuals. Alzheimers Dement. 16, 192–199 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Matuskova, V. et al. Mild behavioral impairment is associated with atrophy of entorhinal cortex and hippocampus in a memory clinic cohort. Front. Aging Neurosci. 13, 236 (2021).

    Article  Google Scholar 

  68. Miao, R. et al. Plasma beta-amyloid in mild behavioural impairment—neuropsychiatric symptoms on the Alzheimer’s continuum. J. Geriatr. Psychiatry Neurol. 35, 434–441 (2021).

    Article  PubMed  Google Scholar 

  69. Naude, J. et al. Plasma neurofilament light: a marker of cognitive decline in mild behavioural impairment. J. Alzheimers Dis. 76, 1017–1027 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Ghahremani, M. et al. Functional connectivity and mild behavioral impairment in dementia‐free elderly. Alzheimers Dement. (N Y) 9, e12371 (2023).

    Article  PubMed  Google Scholar 

  71. Ghahremani, M. et al. Plasma phosphorylated tau at threonine 181 and neuropsychiatric symptoms in preclinical and prodromal Alzheimer disease. Neurology. 100, e683–e693 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Mograbi, D. C. & Morris, R. G. On the relation among mood, apathy, and anosognosia in Alzheimer’s disease. J. Int. Neuropsychol. Soc. 20, 2–7 (2014).

    Article  PubMed  Google Scholar 

  73. Tagai, K., Nagata, T., Shinagawa, S. & Shigeta, M. Anosognosia in patients with Alzheimer’s disease: current perspectives. Psychogeriatrics 20, 345–352 (2020).

    Article  PubMed  Google Scholar 

  74. Nosheny, R. L. et al. The role of dyadic cognitive report and subjective cognitive decline in early ADRD clinical research and trials: current knowledge, gaps, and recommendations. Alzheimers Dement. (N Y) 8, e12357 (2022).

    PubMed  Google Scholar 

  75. Weintraub, S. et al. The Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the neuropsychological test battery. Alzheimer Dis. Assoc. Disord. 23, 91 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Beekly, D. L. et al. The National Alzheimer’s Coordinating Center (NACC) database: the Uniform Data Set. Alzheimer Dis. Assoc. Disord. 21, 249–258 (2007).

    Article  PubMed  Google Scholar 

  77. Morris, J. C. et al. The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. Alzheimer Dis. Assoc. Disord. 20, 210–216 (2006).

    Article  PubMed  Google Scholar 

  78. Sheikh, F. et al. Prevalence of mild behavioral impairment in mild cognitive impairment and subjective cognitive decline, and its association with caregiver burden. Int. Psychogeriatr. 30, 233–244 (2018).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The NACC database is funded by NIA/NIH grant U24 AG072122. NACC data are contributed by the NIA-funded ADRCs: P30 AG019610 (PI E. Reiman), P30 AG013846 (PI N. Kowall), P50 AG008702 (PI S. Small), P50 AG025688 (PI A. Levey), P50 AG047266 (PI T. Golde), P30 AG010133 (PI A. Saykin), P50 AG005146 (PI M. Albert), P50 AG005134 (PI B. Hyman), P50 AG016574 (PI R. Petersen), P50 AG005138 (PI M. Sano), P30 AG008051 (PI T. Wisniewski), P30 AG013854 (PI R. Vassar), P30 AG008017 (PI J. Kaye), P30 AG010161 (PI D. Bennett), P50 AG047366 (PI V. Henderson), P30 AG010129 (PI C. DeCarli), P50 AG016573 (PI F. LaFerla), P50 AG005131 (PI J. Brewer), P50 AG023501 (PI B. Miller), P30 AG035982 (PI R. Swerdlow), P30 AG028383 (PI L. Van Eldik), P30 AG053760 (PI H. Paulson), P30 AG010124 (PI J. Trojanowski), P50 AG005133 (PI O. Lopez), P50 AG005142 (PI H. Chui), P30 AG012300 (PI R. Rosenberg), P30 AG049638 (PI S. Craft), P50 AG005136 (PI T. Grabowski), P50 AG033514 (PI S. Asthana), P50 AG005681 (PI J. Morris), P50 AG047270 (PI S. Strittmatter). Z.I. is supported by the Canadian Institutes of Health Research (BCA2633). M.G. is supported by an award from the Mathison Centre for Mental Health, Research & Education at the University of Calgary, Canada. This study was supported by the National Institute for Health and Care Research Exeter Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Contributions

Z.I. and M.G. had major roles in study design and conception, data preparation, statistical analysis and interpretation, and drafting and revision of the manuscript. M.A.M., C.E.F., E.E.S. and B.C. contributed to drafting and revision of the manuscript and interpretation of the data.

Corresponding author

Correspondence to Zahinoor Ismail.

Ethics declarations

Competing interests

Z.I. has received honoraria from Otsuka/Lundbeck outside the submitted work. His institution has received payment in lieu from Acadia, Biogen and Roche. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Tomoyuki Nagata, Christoph Mueller and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, Z., Ghahremani, M., Amlish Munir, M. et al. A longitudinal study of late-life psychosis and incident dementia and the potential effects of race and cognition. Nat. Mental Health 1, 273–283 (2023). https://doi.org/10.1038/s44220-023-00043-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00043-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing