Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine

Abstract

Voltage-gated sodium (NaV) channels generate the upstroke of the cardiac action potential by activating rapidly in response to depolarization and conducting Na+ inward across the membrane1,2. NaV1.5 is the predominant NaV channel in the heart3,4. It is the molecular target for class I antiarrhythmic drugs (AADs), which often have unwanted side effects, including arrhythmias5,6. In contrast, the atypical AAD ranolazine is effective in treatment of atrial arrhythmias and angina pectoris, but with less proarrhythmia than traditional AADs7,8,9,10,11. Structures of NaV channels from prokaryotes12, skeletal muscle13, nerve14 and heart15 have been determined with AADs bound within the pore to physically block Na+ conductance12,15,16,17,18,19. Here we use electrophysiology and cryogenic electron microscopy to define the interaction of ranolazine with NaV1.5 at high resolution. We reveal ranolazine’s binding pose and elucidate distinct molecular interactions that might underlie its mechanism of action and high therapeutic index relative to traditional class I AADs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ranolazine binding and block of rNaV1.5c.
Fig. 2: The cryo-EM structure of ranolazine bound to rNaV1.5c.
Fig. 3: Functional effects of mutations of contact residues in the ranolazine binding site.
Fig. 4: The structures of ranolazine and other AADs bound to α and π conformations of transmembrane segment DIV-S6.

Similar content being viewed by others

Data availability

All data supporting the finding in this study are included in the main article and associated files. Structural data are available from the Protein Data Bank (PDB) under EMDB entry ID EMD-28887 and PDB entries ID 8F6P & 6UZ3. Source data are provided with this paper.

References

  1. Hall, A. E., Hutter, O. F. & Noble, D. Current–voltage relations of Purkinje fibres in sodium-deficient solutions. J. Physiol. 166, 2225–2240 (1963).

    Article  Google Scholar 

  2. McAllister, R. E., Noble, D. & Tsien, R. W. Reconstruction of the electrical activity of cardiac Purkinje fibres. J. Physiol. 251, 1–59 (1975).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fozzard, H. A. & Hanck, D. A. Structure and function of voltage-dependent sodium channels: comparison of brain II and cardiac isoforms. Physiol. Rev. 76, 887–926 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Catterall, W. A. & Lenaeus, M. J. in Cardiac Electrophysiology: From Cell to Bedside (eds Jalife, J. et al.) Ch. 1 (Elsevier, 2022).

  5. Sampson, K. J. & Kass, R. K. in Goodman & Gilman’s Pharmacological Basis of Therapeutics 12th edn (eds Brunton, L. et al.) 815–848 (McGraw-Hill Education/Medical, 2011).

  6. Catterall, W. A., Lenaeus, M. J. & Gamal El-Din, T. M. Structure and pharmacology of voltage-gated sodium and calcium channels. Annu. Rev. Pharmacol. Toxicol. 60, 133–154 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Chaitman, B. R. et al. Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J. Am. Coll. Cardiol. 43, 1375–1382 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Koren, M. J., Crager, M. R. & Sweeney, M. Long-term safety of a novel antianginal agent in patients with severe chronic stable angina: the Ranolazine Open Label Experience (ROLE). J. Am. Coll. Cardiol. 49, 1027–1034 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Reiffel, J. A. et al. The HARMONY Trial: combined ranolazine and dronedarone in the management of paroxysmal atrial fibrillation: mechanistic and therapeutic synergism. Circ. Arrhythm. Electrophysiol. 8, 1048–1056 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Miles, R. H., Passman, R. & Murdock, D. K. Comparison of effectiveness and safety of ranolazine versus amiodarone for preventing atrial fibrillation after coronary artery bypass grafting. Am. J. Cardiol. 108, 673–676 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Fragakis, N. et al. Comparison of effectiveness of ranolazine plus amiodarone versus amiodarone alone for conversion of recent-onset atrial fibrillation. Am. J. Cardiol. 110, 673–677 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Payandeh, J., Scheuer, T., Zheng, N. & Catterall, W. A. The crystal structure of a voltage-gated sodium channel. Nature 475, 353–358 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pan, X. et al. Structure of the human voltage-gated sodium channel Nav1.4 in complex with beta1. Science https://doi.org/10.1126/science.aau2486 (2018).

  14. Shen, H., Liu, D., Wu, K., Lei, J. & Yan, N. Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363, 1303–1308 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Jiang, D. et al. Structure of the cardiac sodium channel. Cell 180, 122–134.e110 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Gamal El-Din, T. M., Lenaeus, M. J., Zheng, N. & Catterall, W. A. Fenestrations control resting-state block of a voltage-gated sodium channel. Proc. Natl Acad. Sci. USA 115, 13111–13116 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lenaeus, M. J. et al. Structures of closed and open states of a voltage-gated sodium channel. Proc. Natl Acad. Sci. USA 114, E3051–E3060 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang, D. et al. Open-state structure and pore gating mechanism of the cardiac sodium channel. Cell 184, 5151–5162.e5111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li, Z. et al. Structural basis for pore blockade of the human cardiac sodium channel Nav1.5. Angew. Chem. Int. Ed. Engl. 60, 11474–11480 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Catterall, W. A. The molecular basis of neuronal excitability. Science 223, 653–661 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Numa, S. & Noda, M. Molecular structure of sodium channels. Ann. NY Acad. Sci. 479, 338–355 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Catterall, W. A. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron 26, 13–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. West, J. W. et al. A cluster of hydrophobic amino acid residues required for fast Na+ channel inactivation. Proc. Natl Acad. Sci. USA 89, 10910–10914 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Antzelevitch, C. et al. Electrophysiological effects of ranolazine, a novel antianginal agent with antiarrhythmic properties. Circulation 110, 904–910 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rayner-Hartley, E. & Sedlak, T. Ranolazine: a contemporary review. J. Am. Heart Assoc. 5, e003196 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lei, M., Wu, L., Terrar, D. A. & Huang, C. L. Modernized classification of cardiac antiarrhythmic drugs. Circulation 138, 1879–1896 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Makielski, J. C. Late sodium current: a mechanism for angina, heart failure, and arrhythmia. Trends Cardiovasc. Med. 26, 115–122 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Fredj, S., Sampson, K. J., Liu, H. & Kass, R. S. Molecular basis of ranolazine block of LQT-3 mutant sodium channels: evidence for site of action. Br. J. Pharmacol. 148, 16–24 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, C., Chung, B. C., Yan, H., Lee, S. Y. & Pitt, G. S. Crystal structure of the ternary complex of a NaV C-terminal domain, a fibroblast growth factor homologous factor, and calmodulin. Structure 20, 1167–1176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ragsdale, D. S., McPhee, J. C., Scheuer, T. & Catterall, W. A. Molecular determinants of state-dependent block of sodium channels by local anesthetics. Science 265, 1724–1728 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Ragsdale, D. R., McPhee, J. C., Scheuer, T. & Catterall, W. A. Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc. Natl Acad. Sci. USA 93, 9270–9275 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Low, B. & Babutt, R. The pi helix—a hydrogen bonded configuration of the polypeptide chain. J. Am. Chem. Soc. 74, 5806–5907 (1952).

    Article  CAS  Google Scholar 

  33. Huang, G. et al. High-resolution structures of human Na. Cell Rep. 39, 110735 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Zubcevic, L. & Lee, S. Y. The role of π-helices in TRP channel gating. Curr. Opin. Struct. Biol. 58, 314–323 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fodje, M. N. & Al-Karadaghi, S. Occurrence, conformational features and amino acid propensities for the pi-helix. Protein Eng. 15, 353–358 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Choudhury, K., Kasimova, M. A., McComas, S., Howard, R. J. & Delemotte, L. An open state of a voltage-gated sodium channel involving a π-helix and conserved pore-facing asparagine. Biophys. J. 121, 11–22 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, H., Priori, S. G., Napolitano, C., O’Leary, M. E. & Chahine, M. Y1767C, a novel SCN5A mutation, induces a persistent Na+ current and potentiates ranolazine inhibition of Nav1.5 channels. Am. J. Physiol. Heart Circ. Physiol. 300, H288–H299 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Sunami, A., Dudley, S. C. & Fozzard, H. A. Sodium channel selectivity filter regulates antiarrhythmic drug binding. Proc. Natl Acad. Sci. USA 94, 14126–14131 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sunami, A., Glaaser, I. W. & Fozzard, H. A. A critical residue for isoform difference in tetrodotoxin affinity is a molecular determinant of the external access path for local anesthetics in the cardiac sodium channel. Proc. Natl Acad. Sci. USA 97, 2326–2331 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sasaki, K. et al. Unexpected mexiletine responses of a mutant cardiac Na+ channel implicate the selectivity filter as a structural determinant of antiarrhythmic drug access. Mol. Pharmacol. 66, 330–336 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Pless, S. A., Galpin, J. D., Frankel, A. & Ahern, C. A. Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. Nat. Commun. 2, 351 (2011).

    Article  PubMed  Google Scholar 

  42. Echt, D. S. et al. Mortality and morbidity in patients receiving encainide, flecainide, or placebo. The Cardiac Arrhythmia Suppression Trial. N. Engl. J. Med. 324, 781–788 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Suloway, C. et al. Automated molecular microscopy: the new Leginon system. J. Struct. Biol. 151, 41–60 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhang, K. Gctf: real-time CTF determination and correction. J. Struct. Biol. 193, 1–12 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Scheres, S. H. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by National Institutes of Health Research grants K08 HL145630 (M.L.) and R01 HL112808-09 (W.A.C.) and by the Howard Hughes Medical Institue (N.Z.). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. The authors thank J. Quispe (Cryo-EM Facility, University of Washington) for support with cryo-EM data collection and J. Li (Pharmacology, University of Washington) for technical and editorial support.

Author information

Authors and Affiliations

Authors

Contributions

M.L, T.M.G.E.-D., L.T., N.Z. and W.A.C. designed the experiments; M.L. and L.T. carried out the cryo-EM experiments; T.M.G.E.-D. carried out the electrophysiology experiments; and M.L. carried out the molecular model building, refinement and comparison with previous data. All authors contributed to writing and revising the paper.

Corresponding authors

Correspondence to Michael Lenaeus or William A. Catterall.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended Data

Extended Data Fig. 1 The purification of rNav1.5c and preparation of samples for cryo-EM.

a, The size-exclusion chromatography profile is shown for the final step of purification of the rNav1.5c, FGF12B, calmodulin and ranolazine complex with red lines indicating the sample moved forward for cryo-EM analysis. This experiment was only performed once. b, Sample micrograph collected during cryo-EM data collection and representative 2D classifications as determined by Relion. Information on cryo-EM data collection and data processing is shown in Extended Data Fig. 2.

Extended Data Fig. 2 Cryo-EM data processing and 3D reconstruction.

a, Flowchart for EM data processing. b, Gold-standard FSC curve for the 3D reconstruction of rNav1.5c, FGF12B, calmodulin and ranolazine complex.

Extended Data Fig. 3 3D reconstruction of rNav1.5c, FGF12B, calmodulin, and ranolazine complex color coded for map resolution.

EM density is shown from below rNav1.5c as if one is inside the cell and looking outward at the plasma membrane. The map is colored by resolution with scale shown (blue = high resolution, red = lower). A close-up of the ranolazine site is shown, highlighting the quality of EM density at ranolazine’s binding site. A red circle is shown to identify the EM density corresponding to ranolazine.

Extended Data Fig. 4 Functional characterization of the Nav1.5c mutant Q372A and its effects on ranolazine binding.

a. G-V curves of Nav1.5c WT and Q372A mutant derived from I-V relationships. The voltages for half maximal activation and slopes are: WT V1/2 = -73 ± 0.8 mV, K = 5.6 ± 0.6, Q372A V1/2 = -69 ± 0.3 mV, K = 5.5 ± 0.3. Steady-state inactivation of Nav1.5c WT and Q372A mutant. Two pulses were applied: a 500-ms conditioning pulse to the indicated potentials followed by 50 ms test pulse to 0 mV. Nav1.5c WT Vh = -110 ± 0.4, K = 7.8 ± 0.5, Q372A Vh = -104 ± 0.6, K = 7.6 ± 0.5. WT activation and steady-state inactivation curves N = 4 distinct cells, Q372A GV and SSI curves N = 4 distinct cells. b. Dose-response curve for the tonic block of Q372A compared to Nav1.5c WT. Each concentration is an average of three different cells and each cell is used only once for each concentration. Error bars indicates s.e.m.

Extended Data Fig. 5 α-π transition of DIV S6 and π-helix dependent binding of ranolazine.

a, An overlay of DIV-S6 helices from the current structure (light green with pink π-helix highlighted), the apo structure of rNav1.5c (pdb 6uz3, grey), and the open structure of rNav1.5c (pdb 7fbs, cyan). The π-helical portion of DIV-S6 (pink) creates additional drug binding surface in the central cavity of rNav1.5c. b, A close-up of the ranolazine binding site with sticks shown for important residues F1762, V1765, and V1766. Coloring is as in part a and the side chain position of V1766 is shown for both the apo structure and the ranolazine-bound structure, with a black arrow highlighting the distance between these alpha carbon positions (2.7 Å). Yellow dashed lines show the strengthened van der waals contacts in the π-helical form of DIV-S6 found in the ranolazine structure (distance is 3.3 Å). c, A bubble diagram showing the local differences between π-helical (top) and α-helical (bottom) forms of DIV-S6. Residues are shown as bubbles with coloring dependent on the nearest approach of the side chain to the bound drug according to the color scale shown in the figure. The structure and the dimethylbenzyl moiety of ranolazine is shown for reference. d, Stick diagrams of ranolazine and the class IB AADs lidocaine, mexilitine, tocainide, and etidocaine are shown with a red line highlighting each molecule’s dimethylbenzyl moiety.

Extended Data Fig. 6 Effect of α-π transition of DIV S6 on the DIV-DI fenestration.

a. Cartoon models of DIV-S6 (green) and DI-S6 (pale yellow) as in earlier figures. Sticks are shown for DIV-S6 residue Y1769 (green, in π helix conformation), F403 (pale yellow) and the non-lidocaine portion of ranolazine that interacts with F403 by π-teeing (dashed line). Transparent sticks are shown in blue for the apo (α-helix) conformations of Y1769 and F403, illustrating the clash between the side chain of π-Y1769 and apo F403. b, Surface illustration of DIV/DI fenestration in α and π forms of DIV-S6. Domains are colored as in prior figures - DI pale yellow, DIII, pink, DIV, green, DIII/DIV linker (IFM) orange.

Extended Data Table 1 Statistical Parameters for cryo-EM data collection
Extended Data Table 2 Statistical Parameters for Model Refinement

Supplementary information

Source data

Source Data Fig. 3

The effects of mutations on ranolazine binding as measured by electrophysiology. This is a table of individual measurements used to create the data displayed in Fig. 3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenaeus, M., Gamal El-Din, T.M., Tonggu, L. et al. Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine. Nat Cardiovasc Res 2, 587–594 (2023). https://doi.org/10.1038/s44161-023-00271-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00271-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing