Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Defining cardiac functional recovery in end-stage heart failure at single-cell resolution

Abstract

Recovery of cardiac function is the holy grail of heart failure therapy yet is infrequently observed and remains poorly understood. In this study, we performed single-nucleus RNA sequencing from patients with heart failure who recovered left ventricular systolic function after left ventricular assist device implantation, patients who did not recover and non-diseased donors. We identified cell-specific transcriptional signatures of recovery, most prominently in macrophages and fibroblasts. Within these cell types, inflammatory signatures were negative predictors of recovery, and downregulation of RUNX1 was associated with recovery. In silico perturbation of RUNX1 in macrophages and fibroblasts recapitulated the transcriptional state of recovery. Cardiac recovery mediated by BET inhibition in mice led to decreased macrophage and fibroblast Runx1 expression and diminished chromatin accessibility within a Runx1 intronic peak and acquisition of human recovery signatures. These findings suggest that cardiac recovery is a unique biological state and identify RUNX1 as a possible therapeutic target to facilitate cardiac recovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design, global clustering and DE analysis of cardiac remodeling after LVAD implantation.
Fig. 2: Cell-type specific cardiac recovery.
Fig. 3: Cardiomyocytes do not revert to a healthy state in cardiac recovery.
Fig. 4: Pro-inflammatory macrophages and RUNX1 are diminished in reverse remodeling, whereas tissue resident macrophages show signs of recovery.
Fig. 5: RUNX1 is downregulated in fibroblasts in cardiac recovery.
Fig. 6: RUNX1 perturbation in silico and in vivo facilitates cardiac recovery.

Similar content being viewed by others

Data availability

Raw sequencing files and processed normalized data can be found on the Gene Expression Omnibus (GSE226314). Donors were used from published data (GSE183852). All other data supporting the findings in this study are included in the main article and associated files. Source data are provided with this paper.

Code availability

All scripts used for analysis in this manuscript can be found on GitHub (https://github.com/jamrute/2023_Amrute_et_al_NatureCVR_CardiacRecovery).

References

  1. Roger, V. L. Epidemiology of heart failure. Circ. Res. 113, 646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jessup, M. & Brozena, S. Heart failure. N. Engl. J. Med. 348, 2007–2018 (2003).

    Article  PubMed  Google Scholar 

  3. Topkara, V. K. et al. Myocardial recovery in patients receiving contemporary left ventricular assist devices: results from the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Circ. Heart Fail. 9, e003157 (2016).

    Article  PubMed  Google Scholar 

  4. Burkhoff, D., Topkara, V. K., Sayer, G. & Uriel, N. Reverse remodeling with left ventricular assist devices. Circ. Res. 128, 1594–1612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Selzman, C. H. et al. Bridge to removal: a paradigm shift for left ventricular assist device therapy. Ann. Thorac. Surg. 99, 360 (2015).

    Article  PubMed  Google Scholar 

  6. Givertz, M. M. & Mann, D. L. Epidemiology and natural history of recovery of left ventricular function in recent onset dilated cardiomyopathies. Curr. Heart Fail. Rep. 10, 321–330 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Kanwar, M. K. et al. Clinical myocardial recovery in advanced heart failure with long term left ventricular assist device support. J. Heart Lung Transplant. 41, 1324–1334 (2022).

    Article  PubMed  Google Scholar 

  8. Shepherd, C. W. & While, A. E. Cardiac rehabilitation and quality of life: a systematic review. Int. J. Nurs. Stud. 49, 755–771 (2012).

    Article  PubMed  Google Scholar 

  9. Tseliou, E. et al. Biology of myocardial recovery in advanced heart failure with long-term mechanical support. J. Heart Lung Transplant. 41, 1309–1323 (2022).

    Article  PubMed  Google Scholar 

  10. McGuire, A. L. et al. The road ahead in genetics and genomics. Nat. Rev. Genet. 21, 581–596 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Litviňuková, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Koenig, A. L. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chaffin, M. et al. Single-nucleus profiling of human dilated and hypertrophic cardiomyopathy. Nature 608, 174–180 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Tucker, N. R. et al. Transcriptional and cellular diversity of the human heart. Circulation 142, 466–482 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nicin, L. et al. A human cell atlas of the pressure-induced hypertrophic heart. Nat. Cardiovasc. Res. 1, 174–185 (2022).

    Article  Google Scholar 

  17. Amrute, J. M. et al. Targeting the immune-fibrosis axis in myocardial infarction and heart failure. Preprint at https://www.biorxiv.org/content/10.1101/2022.10.17.512579v1 (2022).

  18. Hall, J. L. et al. Molecular signature of recovery following combination left ventricular assist device (LVAD) support and pharmacologic therapy. Eur. Heart J. 28, 613–627 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Yang, K. C. et al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129, 1009–1021 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Drakos, S. G. et al. Distinct transcriptomic and proteomic profile specifies patients who have heart failure with potential of myocardial recovery on mechanical unloading and circulatory support. Circulation 147, 409–424 (2022).

    Article  PubMed  Google Scholar 

  21. Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gupta, D. K. et al. Assessment of myocardial viability and left ventricular function in patients supported by a left ventricular assist device. J. Heart Lung Transplant. 33, 372–381 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Burke, M. A. & Givertz, M. M. Assessment and management of heart failure after left ventricular assist device implantation. Circulation 129, 1161–1166 (2014).

    Article  PubMed  Google Scholar 

  25. Bajpai, G. et al. Tissue resident CCR2 and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zaman, R. et al. Selective loss of resident macrophage-derived insulin-like growth factor-1 abolishes adaptive cardiac growth to stress. Immunity 54, 2057–2071 (2021).

    Article  CAS  PubMed  Google Scholar 

  27. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019).

    PubMed  Google Scholar 

  28. Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363–1375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Asleh, R., Amir, O. & Kushwaha, S. S. Dynamics of myocardial fibrosis after left ventricular assist device implantation: should speeding up the scar have us scared stiff? Eur. J. Heart Fail. 23, 335–338 (2021).

    Article  PubMed  Google Scholar 

  30. Wilcox, J. E. et al. ‘Targeting the heart’ in heart failure: myocardial recovery in heart failure with reduced ejection fraction. JACC Heart Fail. 3, 661–669 (2015).

    Article  PubMed  Google Scholar 

  31. Stratton, M. S. et al. Dynamic chromatin targeting of BRD4 stimulates cardiac fibroblast activation. Circ. Res. 125, 662 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bocchi, V. D. et al. The coding and long noncoding single-cell atlas of the developing human fetal striatum. Science 372, eabf5759 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Rose, E. A. et al. Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345, 1435–1443 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Miller, L., Birks, E., Guglin, M., Lamba, H. & Frazier, O. H. Use of ventricular assist devices and heart transplantation for advanced heart failure. Circ. Res. 124, 1658–1678 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Dharmavaram, N. et al. National trends in heart donor usage rates: are we efficiently transplanting more hearts? J. Am. Heart Assoc. 10, 19655 (2021).

    Article  Google Scholar 

  37. Bowen, R. E. S., Graetz, T. J., Emmert, D. A. & Avidan, M. S. Statistics of heart failure and mechanical circulatory support in 2020. Ann. Transl. Med. 8, 827 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Drakos, S. G. et al. Bridge to recovery: understanding the disconnect between clinical and biological outcomes. Circulation 126, 230 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lenneman, A. J. & Birks, E. J. Treatment strategies for myocardial recovery in heart failure. Curr. Treat. Options Cardiovasc. Med. 16, 287 (2014).

    Article  PubMed  Google Scholar 

  40. Halliday, B. P. et al. Withdrawal of pharmacological treatment for heart failure in patients with recovered dilated cardiomyopathy (TRED-HF): an open-label, pilot, randomised trial. Lancet 393, 61–73 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bottle, A., Faitna, P., Aylin, P. P. & Cowie, M. R. Original research: five-year outcomes following left ventricular assist device implantation in England. Open Heart 8, 1658 (2021).

    Article  Google Scholar 

  42. Wang, L. et al. Single-cell reconstruction of the adult human heart during heart failure and recovery reveals the cellular landscape underlying cardiac function. Nat. Cell Biol. 22, 108–119 (2020).

    Article  PubMed  Google Scholar 

  43. Birks, E. J. et al. Prospective multicenter study of myocardial recovery using left ventricular assist devices (RESTAGE-HF [remission from stage D heart failure]): medium-term and primary end point results. Circulation 142, 2016–2028 (2020).

    Article  PubMed  Google Scholar 

  44. Zhang, J. & Narula, J. Molecular biology of myocardial recovery. Surg. Clin. North Am. 84, 223–242 (2004).

    Article  PubMed  Google Scholar 

  45. Klotz, S., Jan Danser, A. H. & Burkhoff, D. Impact of left ventricular assist device (LVAD) support on the cardiac reverse remodeling process. Prog. Biophys. Mol. Biol. 97, 479–496 (2008).

    Article  PubMed  Google Scholar 

  46. Wohlschlaeger, J. et al. Reverse remodeling following insertion of left ventricular assist devices (LVAD): a review of the morphological and molecular changes. Cardiovasc. Res. 68, 376–386 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Weinheimer, C. J. et al. Load-dependent changes in left ventricular structure and function in a pathophysiologically relevant murine model of reversible heart failure. Circ. Heart Fail. 11, e004351 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chaudhary, K. W. et al. Altered myocardial Ca2+. cycling after left ventricular assist device support in the failing human heart. J. Am. Coll. Cardiol. 44, 837–845 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Ambardekar, A. V. et al. Incomplete recovery of myocyte contractile function despite improvement of myocardial architecture with left ventricular assist device support. Circ. Heart Fail. 4, 425–432 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Epelman, S., Lavine, K. J. & Randolph, G. J. Origin and functions of tissue macrophages. Immunity 41, 21–35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lavine, K. J. et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc. Natl Acad. Sci. USA 111, 16029–16034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wong, N. R. et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 54, 2072–2088 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Khalil, H. et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Tzahor, E. & Dimmeler, S. A coalition to heal—the impact of the cardiac microenvironment. Science 377, eabm4443 (2022).

    Article  CAS  PubMed  Google Scholar 

  58. Sood, R., Kamikubo, Y. & Liu, P. Role of RUNX1 in hematological malignancies. Blood 129, 2070–2082 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chen, M. J., Yokomizo, T., Zeigler, B. M., Dzierzak, E. & Speck, N. A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koth, J. et al. Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development 147, dev186569 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hu, B. et al. Origin and function of activated fibroblast states during zebrafish heart regeneration. Nat. Genet. 54, 1227–1237 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Amrute, J. M. et al. Cell specific peripheral immune responses predict survival in critical COVID-19 patients. Nat. Commun. 13, 882 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kong, Y. & Yu, T. A deep neural network model using random forest to extract feature representation for gene expression data classification. Sci. Rep. 8, 16477 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Khouri-Farah, N., Guo, Q., Morgan, K., Shin, J. & Li, J. Y. H. Integrated single-cell transcriptomic and epigenetic study of cell state transition and lineage commitment in embryonic mouse cerebellum. Sci. Adv. 8, eabl9156 (2022).

    Article  CAS  PubMed  Google Scholar 

  65. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wang, F. et al. RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 14, 22–29 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Setty, M. et al. Characterization of cell fate probabilities in single-cell data with Palantir. Nat Biotechnol. 37, 451–460 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wu, T. et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2, 100141 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

K.L. is supported by the Washington University in St. Louis Rheumatic Diseases Research Resource-Based Center Grant (National Institutes of Health (NIH) P30AR073752, NIH R01 HL138466, R01 HL139714, R01 HL151078, R01 HL161185 and R35 HL161185); the Leducq Foundation Network (20CVD02); the Burroughs Welcome Fund (1014782); the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (CH-II-2015-462, CH-II-2017-628 and PM-LI-2019-829); the Foundation of Barnes-Jewish Hospital (8038-88); and generous gifts from Washington University School of Medicine. S.D. is supported by the American Heart Association Heart Failure Strategically Focused Research Network (grant 16SFRN29020000); National Heart, Lung, and Blood Institute (NHLBI) RO1 grant HL135121, NHLBI RO1 grant HL132067, NHLBI R01 grant HL156667 and NHLBI R01 grant HL151924; Merit Review Award I01 CX002291, US Department of Veterans Affairs; and Nora Eccles Treadwell Foundation grants. J.M.A. is supported by an American Heart Association Predoctoral Fellowship (826325) and the Washington University in St. Louis School of Medicine Medical Scientist Training Program. P.M. is supported by an American Heart Association Postdoctoral Fellowship (916955). T.S. is supported by an American Heart Association Postdoctoral Fellowship (23POST1019351). Figures 1a, 2d and 6c,j were created with BioRender. Histology was performed in the Digestive Diseases Research Core Centers Advanced Imaging and Tissue Analysis Core, supported by grant P30 DK52574. Imaging was performed in the Washington University Center for Cellular Imaging, which is funded, in part, by the Children’s Discovery Institute of Washington University and St. Louis Children’s Hospital (CDI-CORE-2015-505 and CDI-CORE-2019-813) and the Foundation for Barnes-Jewish Hospital (3770). We thank the Genome Technology Access Center at the McDonnell Genome Institute at Washington University School of Medicine for help with genomic analysis. The center is partially supported by National Cancer Institute Cancer Center Support Grant P30 CA91842 to the Siteman Cancer Center. This publication is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the NIH. The authors are grateful to the donor families for their generosity, and DonorConnect (https://www.donorconnect.life/), Salt Lake City, Utah, for facilitating the work of our research team members acquiring myocardial tissue in the operating rooms of several hospitals in Utah and several other states. The authors are grateful to the University of Utah cardiothoracic surgery team for the invaluable help acquiring the myocardial tissue from chronic heart failure patients.

Author information

Authors and Affiliations

Authors

Contributions

S.D. contributed to LVAD sample acquisition and clinical phenotyping. P.M., L.L., A.B. and A.K. isolated nuclei for snRNA-seq. J.A. performed all computational analysis. J.M.A. and K.K. performed GRN analysis and in silico transcription factor perturbation analysis. J.A., L.L., P.M., L.S., D.S., F.K., T.S.S. and B.K. performed RNA in situ hybridization and immunohistochemistry experiments and analyzed and processed images. J.A., F.L., R.K., S.M., D.M., S.D. and K.L. assisted in the interpretation of the data. J.A. made all figures, and J.A. and K.L. drafted the manuscript. K.L. is responsible for all aspects of this manuscript, including experimental design, data analysis and manuscript production. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Kory J. Lavine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Quality control metrics.

nCount_RNA, nFeature_RNA, percent.mt, and scrublet doublet score split by (A) condition and (B) cell type.

Extended Data Fig. 2 Global clustering.

(A) Heatmap of top10 marker gens for each cell type identified via DE analysis. (B) DotPlot for cell type gene set scores from (A) where the x-axis is cell type gene signature and y-axis is the cluster. (C) Gene set z-scores for top gene markers for each cell type plotted in the UMAP embedding. (D) Cell type composition for each of the patient samples.

Extended Data Fig. 3 Pseudobulk DE analysis to unravel cardiac recovery.

(A) Pseudobulk DE analysis in each cell type in 3 comparison groups: pre-LVAD HF vs donor, RR-post vs donor, and RR-post vs pre-LVAD HF. Red dots indicate statistically significant genes (adjusted p-value < 0.05). (B) Total number of statistically significant (adjusted p-value < 0.05 and log2FC > 0.58) per cell type in comparisons from (A). (C) Number of overlapping genes in five major cell populations which are up and down in the comparisons from (A). Red number is the number of cardiac recovery genes. P-values calculated using Wald test adjusted for multiple corrections.

Extended Data Fig. 4 Cardiac recovery overlap amongst cell types.

UpSet plot showing overlap in cardiac recovery genes from (Fig. 2) in five major cell populations which are (A) up and (B) down in cardiac recovery.

Extended Data Fig. 5 Cell-specific pseudobulk analysis.

Pseudobulk PCA analysis in each cell type colored by five conditions (donor, U-pre, U-post, RR-pre, and RR-post).

Extended Data Fig. 6 ABRA expression enriched in unloaded group.

(A) DotPlot of cardiomyocyte specific recovery up- and down signature grouped by CM cell states. (B) Density plot of ABRA expression in UMAP embedding. (C) DotPlot of ABRA expression in cardiomyocytes grouped by condition. (D) RNAscope images of ABRA in 5 conditions and scale bar is 100 um. (E) RNAscope images quantified across an array of patients. N = 37 biologically independent samples and p-values calculated using Wald test adjusted for multiple corrections; donor vs U-pre (*P = 0.023), U-pre vs RR-pre (***P < 0.0001), U-pre vs RR-post (***P = 0.0003), U-post vs RR-pre (***P = 0.0007), U-post vs RR-post (*P = 0.0188), and RR-pre vs RR-post (***P = 0.0007).

Source data

Extended Data Fig. 7 Macrophage diversity in recovery.

(A) Gene set z-scores for top gene markers for each cell state plotted in the UMAP embedding. (B) Enrich GO using compareclusters from cluster Prolifer across macrophage cell states. P-value calculated using Fisher exact test. (C) WikiPathways enriched in cardiac recovery. P-value calculated using Fisher exact test. (D) Paired comparison of Mac 2 cluster composition at patient level split by U and RR group from biologically independent samples. (E) DoRothEA TF enrichment analysis in U-post and RR-post zoomed in on some key differentially enriched TFs. (F) Overlap between Runx1 target genes and DE genes between U-pre and RR-pre with heatmap of respective genes split by condition.

Source data

Extended Data Fig. 8 Fibroblast diversity in recovery.

(A) Gene set z-scores for top gene markers for each cell state plotted in the UMAP embedding. (B) DotPlot for cell type gene set scores from (A) where the x-axis is cell type gene signature and y-axis is the cluster. (C) Enrich GO using compareclusters from cluster profiler across fibroblast cell states. P-value calculated using Fisher exact test.

Extended Data Fig. 9 CellOracle simulation in myeloid cells in TAC.

(A) Myeloid cell states, (B) Marker genes for cell states, (C) Cell state composition and cell density plots in TAC and TAC + JQ1, and (D) Cell oracle Runx1 KO perturbation score with vector field.

Extended Data Fig. 10 CellOracle simulation in fibroblasts in TAC.

(A) Fibroblast cell states, (B) Marker genes for cell states, (C) Cell state composition and cell density plots in TAC and TAC + JQ1, and (D) Cell oracle Runx1 KO perturbation score with vector field.

Supplementary information

Supplementary Information

Supplementary Figs. 1 and 2.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–22.

Source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 6

Statistical source data

Source Data Extended Data Fig. 6

Statistical source data

Source Data Extended Data Fig. 7

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amrute, J.M., Lai, L., Ma, P. et al. Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. Nat Cardiovasc Res 2, 399–416 (2023). https://doi.org/10.1038/s44161-023-00260-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-023-00260-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing