Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Syndecan-2 selectively regulates VEGF-induced vascular permeability

An Author Correction to this article was published on 09 June 2022

This article has been updated

Abstract

Vascular endothelial growth factor (VEGF)-driven increase in vascular permeability is a key feature of many disease states associated with inflammation and ischemic injury, contributing significantly to morbidity and mortality in these settings. Despite its importance, no specific regulators that preferentially control a VEGF-dependent increase in permeability versus its other biological activities have been identified. Here, we report that a proteoglycan, Syndecan-2 (Sdc2), regulates the interaction between a transmembrane phosphatase, DEP1, and VEGFR2 by controlling cell surface levels of DEP1. In the absence of Sdc2 or the presence of an antibody that blocks the Sdc2–DEP1 interaction, increased plasma membrane DEP1 levels promote selective dephosphorylation of the VEGFR2 Y951 site that is involved in permeability control. Either an endothelial-specific Sdc2 deletion or a treatment with an anti-Sdc2 antibody results in a marked reduction in stroke size due to a decrease in intracerebral edema.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sdc2 deletion leads to reduced VEGFA-induced Y951 phosphorylation and permeability in vivo.
Fig. 2: Increased DEP1 surface level in Sdc2−/− mouse ECs promotes selective dephosphorylation of VEGFR2 Y951 (Y951 in mouse).
Fig. 3: Sdc2–DEP1 interaction regulates DEP1 surface level and can be exploited to achieve specific inhibition of VEGFA-induced permeability.
Fig. 4: Sdc2 deletion or treatment with an antibody that blocks the Sdc2–DEP1 interaction confers neuroprotection in a mouse focal stroke model.
Fig. 5: Proposed working model for regulation of DEP1 surface level by Sdc2.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the paper and associated files. Source data are provided with this paper.

Change history

References

  1. Bates, D. O. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res. 87, 262–271 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Park-Windhol, C. & D’Amore, P. A. Disorders of vascular permeability. Annu. Rev. Pathol. 11, 251–281 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Claesson-Welsh, L., Dejana, E. & McDonald, D. M. Permeability of the endothelial barrier: identifying and reconciling controversies. Trends Mol. Med. 27, 314–331 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. van Bruggen, N. et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J. Clin. Invest. 104, 1613–1620 (1999).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Croll, S. D. et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp. Neurol. 187, 388–402 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Barratt, S., Medford, A. R. & Millar, A. B. Vascular endothelial growth factor in acute lung injury and acute respiratory distress syndrome. Respiration 87, 329–342 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Sharp, C., Millar, A. B. & Medford, A. R. Advances in understanding of the pathogenesis of acute respiratory distress syndrome. Respiration 89, 420–434 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Orsenigo, F. et al. Phosphorylation of VE-cadherin is modulated by haemodynamic forces and contributes to the regulation of vascular permeability in vivo. Nat. Commun. 3, 1208 (2012).

    Article  PubMed  Google Scholar 

  9. Sun, Z. et al. VEGFR2 induces c-Src signaling and vascular permeability in vivo via the adaptor protein TSAd. J. Exp. Med. 209, 1363–1377 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simons, M., Gordon, E. & Claesson-Welsh, L. Mechanisms and regulation of endothelial VEGF receptor signalling. Nat. Rev. 17, 611–625 (2016).

    Article  CAS  Google Scholar 

  11. Smith, R. O. et al. Vascular permeability in retinopathy is regulated by VEGFR2 Y949 signaling to VE-cadherin.Elife 9, e54056 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eliceiri, B. P. et al. Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4, 915–924 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Paul, R. et al. Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat. Med. 7, 222–227 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Gavard, J. & Gutkind, J. S. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol. 8, 1223–1234 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Elias, B. C. et al. Phosphorylation of Tyr-398 and Tyr-402 in occludin prevents its interaction with ZO-1 and destabilizes its assembly at the tight junctions. J. Biol. Chem. 284, 1559–1569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fantin, A. et al. VEGF165-induced vascular permeability requires NRP1 for ABL-mediated SRC family kinase activation. J. Exp. Med. 214, 1049–1064 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gitay-Goren, H., Soker, S., Vlodavsky, I. & Neufeld, G. The binding of vascular endothelial growth factor to its receptors is dependent on cell surface-associated heparin-like molecules. J. Biol. Chem. 267, 6093–6098 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Chiodelli, P., Bugatti, A., Urbinati, C. & Rusnati, M. Heparin/Heparan sulfate proteoglycans glycomic interactome in angiogenesis: biological implications and therapeutical use. Molecules 20, 6342–6388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Corti, F. et al. N-terminal syndecan-2 domain selectively enhances 6-O heparan sulfate chains sulfation and promotes VEGFA165-dependent neovascularization. Nat. Commun. 10, 1562 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ferrara, N. Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Mol. Biol. Cell 21, 687–690 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, X. et al. VEGFR2 pY949 signalling regulates adherens junction integrity and metastatic spread. Nat. Commun. 7, 11017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brash, J. T. Evaluating vascular hyperpermeability-inducing agents in the skin with the Miles assay. J. Vis. Exp.(136), 57524.

  23. Wang, Y. et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465, 483–486 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. Hayashi, M. et al. VE-PTP regulates VEGFR2 activity in stalk cells to establish endothelial cell polarity and lumen formation. Nat. Commun. 4, 1672 (2013).

    Article  PubMed  Google Scholar 

  25. Grazia Lampugnani, M. et al. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J. Cell Biol. 161, 793–804 (2003).

    Article  PubMed  Google Scholar 

  26. Fournier, P. et al. The protein tyrosine phosphatase PTPRJ/DEP-1 contributes to the regulation of the Notch-signaling pathway and sprouting angiogenesis. Angiogenesis 23, 145–157 (2020).

    Article  PubMed  Google Scholar 

  27. Lanahan, A. A. et al. PTP1b is a physiologic regulator of vascular endothelial growth factor signaling in endothelial cells. Circulation 130, 902–909 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Corti, F. & Simons, M. Modulation of VEGF receptor 2 signaling by protein phosphatases. Pharmacol. Res. 115, 107–123 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Lanahan, A. A. et al. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev. Cell 18, 713–724 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ostman, A., Yang, Q. & Tonks, N. K. Expression of DEP-1, a receptor-like protein-tyrosine-phosphatase, is enhanced with increasing cell density. Proc. Natl. Acad. Sci. U S A 91, 9680–9684 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takahashi, T. et al. Endothelial localization of receptor tyrosine phosphatase, ECRTP/DEP-1, in developing and mature renal vasculature. J. Am. Soc. Nephrol. 10, 2135–2145 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Adam, A. P. Regulation of endothelial adherens junctions by tyrosine phosphorylation.Mediators Inflamm. 2015, 272858 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Whiteford, J. R. et al. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol. Biol. Cell 22, 3609–3624 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kofler, N. et al. The Rab-effector protein RABEP2 regulates endosomal trafficking to mediate vascular endothelial growth factor receptor-2 (VEGFR2)-dependent signaling. J. Biol. Chem. 293, 4805–4817 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Srinivasan, B. & Kolli, A. R. in Blood-Brain Barrier (ed. Barichell, T.) 99–114 (Springer, 2019).

  36. Lange, C., Storkebaum, E., de Almodovar, C. R., Dewerchin, M. & Carmeliet, P. Vascular endothelial growth factor: a neurovascular target in neurological diseases. Nat. Rev. Neurol. 12, 439–454 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Apte, R. S., Chen, D. S. & Ferrara, N. VEGF in signaling and disease: beyond discovery and development. Cell 176, 1248–1264 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simard, J. M., Kent, T. A., Chen, M., Tarasov, K. V. & Gerzanich, V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol. 6, 258–268 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ma, Y., Zechariah, A., Qu, Y. & Hermann, D. M. Effects of vascular endothelial growth factor in ischemic stroke. J. Neurosci. Res. 90, 1873–1882 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Geiseler, S. J. & Morland, C. The Janus face of VEGF in stroke.Int. J. Mol. Sci. 19, 1362 (2018).

    Article  PubMed Central  Google Scholar 

  41. Doyle, K. P. & Buckwalter, M. S. A mouse model of permanent focal ischemia: distal middle cerebral artery occlusion. Methods Mol. Biol. 1135, 103–110 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Jin, Z. G. et al. Ligand-independent activation of vascular endothelial growth factor receptor 2 by fluid shear stress regulates activation of endothelial nitric oxide synthase. Circ. Res. 93, 354–363 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Warren, C. M. A ligand-independent VEGFR2 signaling pathway limits angiogenic responses in diabetes. Sci. Signal. 7, ra1 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Couchman, J. R., Gopal, S., Lim, H. C., Norgaard, S. & Multhaupt, H. A. Fell-Muir Lecture: Syndecans: from peripheral coreceptors to mainstream regulators of cell behaviour. Int. J. Exp. Pathol. 96, 1–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. De Rossi, G. et al. Pathological angiogenesis requires Syndecan-4 for efficient VEGFA-induced VE-Cadherin internalization. Arter. Thromb. Vasc. Biol. 41, 1374–1389 (2021).

    Article  Google Scholar 

  46. Dews, I. C. & Mackenzie, K. R. Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc. Natl. Acad. Sci. U S A 104, 20782–20787 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ruiz, X. D. et al. Syndecan-2 is a novel target of insulin-like growth factor binding protein-3 and is over-expressed in fibrosis. PLoS One 7, e43049 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choi, S. et al. Inflammatory hypoxia induces syndecan-2 expression through IL-1beta-mediated FOXO3a activation in colonic epithelia. FASEB J. 31, 1516–1530 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Hong, H. et al. Up-regulation of syndecan-2 in proximal colon correlates with acute inflammation. FASEB J. 33, 11381–11395 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, Z. G. et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J. Clin. Invest. 106, 829–838 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reeson, P. et al. Delayed inhibition of VEGF signaling after stroke attenuates blood-brain barrier breakdown and improves functional recovery in a comorbidity-dependent manner. J. Neurosci. 35, 5128–5143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Corti, F., Finetti, F., Ziche, M. & Simons, M. The Syndecan-4/protein kinase C alpha pathway mediates prostaglandin E-2-induced extracellular regulated kinase (ERK) activation in endothelial cells and angiogenesis in vivo. J. Biol. Chem. 288, 12712–12721 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carrodus, N. L. et al. Differential labeling of cell-surface and internalized proteins after antibody feeding of live cultured neurons. J. Vis. Exp. e51139 (2014).

  55. Tang, Z. et al. A mouse model of the cornea pocket assay for angiogenesis study. J. Vis. Exp. 54, 3077 (2011).

  56. Ziche, M. & Morbidelli, L. The corneal pocket assay. Methods Mol. Biol. 1214, 15–28 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Gerriets, T. et al. Noninvasive quantification of brain edema and the space-occupying effect in rat stroke models using magnetic resonance imaging. Stroke 35, 566–571 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. Kovalenko, M. et al. Site-selective dephosphorylation of the platelet-derived growth factor beta-receptor by the receptor-like protein-tyrosine phosphatase DEP-1. J. Biol. Chem. 275, 16219–16226 (2000).

    Article  CAS  PubMed  Google Scholar 

  59. Persson, C., Engstrom, U., Mowbray, S. L. & Ostman, A. Primary sequence determinants responsible for site-selective dephosphorylation of the PDGF beta-receptor by the receptor-like protein tyrosine phosphatase DEP-1. FEBS Lett. 517, 27–31 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Tarcic, G. et al. An unbiased screen identifies DEP-1 tumor suppressor as a phosphatase controlling EGFR endocytosis. Curr. Biol. 19, 1788–1798 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Chen for the technical assistance and helpful discussion regarding the corneal pocket assay and confocal imaging. This work was supported by grants from National Institute of Health (NIH) HL149343 and HL062289 to Michael Simons.

Author information

Authors and Affiliations

Authors

Contributions

F.C. designed and performed experiments, analyzed data and wrote manuscript. E.R. designed/performed experiments and analyzed data. R.-M.F. performed experiments and analyzed data. T.D. designed experiments and analyzed data. J.Z., Z.W.Z. and J.M., performed experiments. M.S. designed experiments, analyzed data and wrote the manuscript.

Corresponding author

Correspondence to M. Simons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks Christiana Ruhrberg, Philipp Berger and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

a-b, western blot analysis of VEGFR2 phosphorylation (pVEGFR2) following stimulation with VEGFA165 (50 ng/ml) or VEGFA121 (50 ng/ml) in Control (Ctr Si) vs. Sdc2-depleted (Sdc2 siRNA) HUVEC. c, VEGFA165 -induced Evans blue leakage in the back skin of WT vs Sdc2iECKO mice (n = 5–6) (representative blots of 3 independent experiments). d, evaluation of baseline permeability in various organs measured as Evans blue dye leakage in Wild type (WT) vs Sdc2-/- mice (n = 3–6). e, f western blot analysis of cell surface protein levels in Control (Ctr) vs. Sdc2-depleted (Sdc2 siRNA) HUVEC (n = 3). Data are presented as mean values + /- SEM (standard error of the mean). In all figure panels, each dot represents a biological independent experiment (n). Statistical analysis was performed by one-way ANOVA with Sidak’s multiple comparison test (panels c, d), and by unpaired t-student test (panel f), (N.S. not significant, * P < 0.05, ** P < 0.01, *** P < 0.001).

Source data

Extended Data Fig. 2

a, confocal image of confluent HUVEC cells in basal conditions showing human DEP1 carrying N-terminal HA-tag (DEP1-HA, red) expression at cell–cell junctions labeled with VE-cadherin (cyan), white arrows, lower panels. Scale bar: 25 μm. b, confocal image of HUVEC cells in basal conditions expressing both human DEP1 carrying N-terminal HA-tag (DEP1-HA, red) and human Sdc2 carrying N-terminal SNAP-tag (SDC2-SNAP, green) proteins. Lower panels show magnification of box in upper panels showing localization of both proteins at the plasma membrane and at the membrane protrusions. Scale bar: 25 μm. c, f, SIM imaging of SDC2/DEP1/Rab5 and SDC2/DEP1/VEGFR2 complexes in HUVECs expressing DEP1-HA and SDC2-SNAP proteins and treated for 20 min with 50 ng/ml VEGFA165. Scale bar: 0.5 μm. d,f, line profile analysis illustrating the distance between DEP1, Sdc2 and Rab5 or DEP1, Sdc2 and VEGFR2 in the same compartment. Plots represent the fluorescent signal in SIM images as a function of position along the line profile in left panel (red dotted line). g, h confocal images of constitutive internalization of DEP1 after incubation for 0 min, 30 min and 60 min in absence of VEGFA in HUVECs control and HUVECs transfected with Sdc2 siRNA. Scale bar: 15 μm. i, confocal image of internalized SDC2–DEP1 complexes in Rab5+ endosomes (white arrows) following constitutive endocytosis in VEGFA-free media. Scale bar: 5 μm. All images are representative images of >3 independent experiments (n). Data are presented as mean values + /- SEM (standard error of the mean). Statistical analysis was performed by two-way ANOVA with Sidak’s multiple comparison test (panels h), (N.S. not significant, * P < 0.05, ** P < 0.01, *** P < 0.001).

Source data

Extended Data Fig. 3

a, position and sequence of DEP1-binding motif in human Sdc2. b, direct ELISA comparing Sdc2 pAb (5 µg/ml) binding to mouse Sdc2 vs. mouse Sdc4. c, bEnd.3 cell proliferation in presence of rabbit IgG (5 µg/ml) or Sdc2 pAb (5 µg/ml) measured with xCELLigence system. d-e, ECs migration measured by in vitro wound-healing assay in bEnd.3 cells in presence of rabbit IgG (5 µg/ml) or Sdc2 pAb (5 µg/ml) (n = 3–4) f-g, TTC staining (at 24 h post stroke) and quantification of stroke infarct in WT vs Sdc2iECKO (n = 5–8). h-i, TTC staining (at 24 h post stroke) in Sdc2-/- mice with or without Sdc2 pAb treatment (administered 1 hour before stroke) (n = 4–9). Data are presented as mean values + /- SEM (standard error of the mean). In all figure panels, each dot represents a biological independent experiment (n). Statistical analysis was performed by one-way ANOVA with Sidak’s multiple comparison test (panels e, i), and by unpaired t-student test (panel g), (N.S. not significant, * P < 0.05, ** P < 0.01, *** P < 0.001).

Source data

Extended Data Fig. 4

MR imaging of IgG and Sdc2 pAb-treated mice: Representative T2 maps from mouse treated with IgG and Sdc2 pAb showing relatively well defined heterogeneous, hyperintense area within right MCA territory with measured T2 values in a range of 0.05–0.09 ms which were higher compared with contralateral normal tissue average 0.03 ms. On the ADC map, in the same region there is hypointense area with low ADC values, range from 0.4–0.8×10–3mm2/s, due to restricted diffusion. In normal appearing contralateral tissue measured ADC values were 0.9–1.1×10-3mm2/s. Compartmentalization analysis (see Material and Methods for details) shows different compartments of ischemic stroke; core (white), penumbra (light green) and edema (dark green).

Supplementary information

Source data

Source Data Fig. 1

Source data Fig. 1.

Source Data Fig. 1

Western blots Fig. 1.

Source Data Fig. 2

Source data Fig. 2.

Source Data Fig. 2

Western blots Fig. 2.

Source Data Fig. 3

Source data Fig. 3.

Source Data Fig. 3

Western blots Fig. 3.

Source Data Extended Data Fig. 1

Source data Extended Data Fig. 1.

Source Data Extended Data Fig. 1

Western blots Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source data Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source data Extended Data Fig. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corti, F., Ristori, E., Rivera-Molina, F. et al. Syndecan-2 selectively regulates VEGF-induced vascular permeability. Nat Cardiovasc Res 1, 518–528 (2022). https://doi.org/10.1038/s44161-022-00064-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00064-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing