Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fibroblasts orchestrate cellular crosstalk in the heart through the ECM

Abstract

Cell communication is needed for organ function and stress responses, especially in the heart. Cardiac fibroblasts, cardiomyocytes, immune cells and endothelial cells comprise the major cell types in the ventricular myocardium that together coordinate all functional processes. Critical to this cellular network is the non-cellular extracellular matrix (ECM) that provides structure and harbors growth factors and other signaling proteins that affect cell behavior. The ECM not only is produced and modified by cells within the myocardium, largely cardiac fibroblasts, but also acts as an avenue for communication among all myocardial cells. In this Review, we discuss how the development of therapeutics to combat cardiac diseases, specifically fibrosis, relies on a deeper understanding of how the cardiac ECM is intertwined with signaling processes that underlie cellular activation and behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The ECM facilitates communication among fibroblasts, cardiomyocytes and macrophages in the heart.
Fig. 2: Cardiomyocytes and fibroblasts sense each other through the dynamic ECM environment.
Fig. 3: Promising therapeutic targets for mediating CF activation and fibrosis.

Similar content being viewed by others

References

  1. Burgess, M. L., McCrea, J. C. & Hedrick, H. L. Age-associated changes in cardiac matrix and integrins. Mech. Ageing Dev. 122, 1739–1756 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. de Souza, R. R. Aging of myocardial collagen. Biogerontology 3, 325–335 (2002).

    Article  PubMed  Google Scholar 

  3. Weber, K. T., Pick, R., Jalil, J. E., Janicki, J. S. & Carroll, E. P. Patterns of myocardial fibrosis. J. Mol. Cell. Cardiol. 21, 121–131 (1989).

    Article  PubMed  Google Scholar 

  4. Lu, P., Takai, K., Weaver, V. M. & Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 3, a005058 (2011).

  5. Frangogiannis, N. G. Cardiac fibrosis: cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol. Aspects Med. 65, 70–99 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Khalil, H. et al. Cell-specific ablation of Hsp47 defines the collagen-producing cells in the injured heart. JCI Insight 4, e128722 (2019). Through ablation of a critical collagen chaperone (HSP47), this study shows that collagen production specifically from cardiac fibroblasts is essential to the development of cardiac fibrosis after injury.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sun, Y. & Weber, K. T. Infarct scar: a dynamic tissue. Cardiovasc. Res. 46, 250–256 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Weber, K. T. Fibrosis in hypertensive heart disease: focus on cardiac fibroblasts. J. Hypertens. 22, 47–50 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Willems, I. E., Havenith, M. G., De Mey, J. G. & Daemen, M. J. The α-smooth muscle actin-positive cells in healing human myocardial scars. Am. J. Pathol. 145, 868–875 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hinz, B. Formation and function of the myofibroblast during tissue repair. J. Invest. Dermatol. 127, 526–537 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hynes, R. O. & Naba, A. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4, a004903 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Villalobos Lizardi, J. C. et al. A guide for assessment of myocardial stiffness in health and disease. Nat. Cardiovasc. Res. 1, 8–22 (2022).

    Article  Google Scholar 

  14. Varagic, J., Susic, D. & Frohlich, E. Heart, aging, and hypertension. Curr. Opin. Cardiol. 16, 336–341 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Perestrelo, A. R. et al. Multiscale analysis of extracellular matrix remodeling in the failing heart. Circ. Res. 128, 24–38 (2021). In this paper, the authors combined a number of imaging and analysis techniques to observe differential ECM organization and fibroblast activation in mouse hearts after MI, which was reflected in experiments with isolated fibroblasts from human patients with heart failure.

    Article  CAS  PubMed  Google Scholar 

  16. Bugg, D. et al. Infarct collagen topography regulates fibroblast fate via p38-yes-associated protein transcriptional enhanced associate domain signals. Circ. Res. 127, 1306–1322 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Valiente-Alandi, I. et al. Inhibiting fibronectin attenuates fibrosis and improves cardiac function in a model of heart failure. Circulation 138, 1236–1252 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Weis, S. M. et al. Myocardial mechanics and collagen structure in the osteogenesis imperfecta murine (oim). Circ. Res. 87, 663–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Mukherjee, D. & Sen, S. Alteration of cardiac collagen phenotypes in hypertensive hypertrophy: role of blood pressure. J. Mol. Cell. Cardiol. 25, 185–196 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Norton, G. R. et al. Myocardial stiffness is attributed to alterations in cross-linked collagen rather than total collagen or phenotypes in spontaneously hypertensive rats. Circulation 96, 1991–1998 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Echegaray, K. et al. Role of myocardial collagen in severe aortic stenosis with preserved ejection fraction and symptoms of heart failure. Rev. Esp. Cardiol. (Engl. Ed.) 70, 832–840 (2017).

    Article  Google Scholar 

  22. Oka, T. et al. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling. Circ. Res. 101, 313–321 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Miyazaki, H. et al. Comparison of gene expression profiling in pressure and volume overload-induced myocardial hypertrophies in rats. Hypertens. Res. 29, 1029–1045 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Sivakumar, P., Gupta, S., Sarkar, S. & Sen, S. Upregulation of lysyl oxidase and MMPs during cardiac remodeling in human dilated cardiomyopathy. Mol. Cell. Biochem. 307, 159–167 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Zibadi, S., Vazquez, R., Larson, D. F. & Watson, R. R. T lymphocyte regulation of lysyl oxidase in diet-induced cardiac fibrosis. Cardiovasc. Toxicol. 10, 190–198 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Ohmura, H. et al. Cardiomyocyte-specific transgenic expression of lysyl oxidase-like protein-1 induces cardiac hypertrophy in mice. Hypertens. Res. 35, 1063–1068 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. Yang, J. et al. Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment. Nat. Commun. 7, 13710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia, Y. et al. Endogenous thrombospondin 1 protects the pressure-overloaded myocardium by modulating fibroblast phenotype and matrix metabolism. Hypertension 58, 902–911 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Frolova, E. G. et al. Thrombospondin-4 regulates fibrosis and remodeling of the myocardium in response to pressure overload. FASEB J. 26, 2363–2373 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Schips, T. G. et al. Thrombospondin-3 augments injury-induced cardiomyopathy by intracellular integrin inhibition and sarcolemmal instability. Nat. Commun. 10, 76 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Podesser, B. K. et al. Tenascin-C promotes chronic pressure overload-induced cardiac dysfunction, hypertrophy and myocardial fibrosis. J. Hypertens. 36, 847–856 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Bradshaw, A. D. et al. Pressure overload-induced alterations in fibrillar collagen content and myocardial diastolic function: role of secreted protein acidic and rich in cysteine (SPARC) in post-synthetic procollagen processing. Circulation 119, 269–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Shinde, A. V. et al. Tissue transglutaminase induction in the pressure-overloaded myocardium regulates matrix remodelling. Cardiovasc. Res. 113, 892–905 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gupta, R. K. & Kuznicki, J. Biological and medical importance of cellular heterogeneity deciphered by single-cell RNA sequencing. Cells 9, 1751 (2020).

  35. Wang, M., Gu, M., Liu, L., Liu, Y. & Tian, L. Single-cell RNA sequencing (scRNA-seq) in cardiac tissue: applications and limitations. Vasc. Health Risk Manag. 17, 641–657 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Yamada, S. & Nomura, S. Review of single-cell RNA sequencing in the heart. Int. J. Mol. Sci. 21, 8345 (2020).

  37. Tallquist, M. D. Cardiac fibroblast diversity. Annu. Rev. Physiol. 82, 63–78 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, Y. et al. Single-cell analysis of murine fibroblasts identifies neonatal to adult switching that regulates cardiomyocyte maturation. Nat. Commun. 11, 2585 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of cardiac stromal, vascular and immune cells in health and injury. eLife 8, e43882 (2019).

  40. DeLaughter, D. M. et al. Single-cell resolution of temporal gene expression during heart development. Dev. Cell 39, 480–490 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cui, M. et al. Dynamic transcriptional responses to injury of regenerative and non-regenerative cardiomyocytes revealed by single-nucleus RNA sequencing. Dev. Cell 55, 665–667 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity and intercommunication in the mouse heart. Cell Rep. 22, 600–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  43. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M. & Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation 125, 1795–1808 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Padula, S. L., Velayutham, N. & Yutzey, K. E. Transcriptional regulation of postnatal cardiomyocyte maturation and regeneration. Int. J. Mol. Sci. 22, 3288 (2021).

  45. Lacraz, G. P. A. et al. Tomo-seq identifies SOX9 as a key regulator of cardiac fibrosis during ischemic injury. Circulation 136, 1396–1409 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Mantri, M. et al. Spatiotemporal single-cell RNA sequencing of developing chicken hearts identifies interplay between cellular differentiation and morphogenesis. Nat. Commun. 12, 1771 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Liu, X. et al. Cell proliferation fate mapping reveals regional cardiomyocyte cell-cycle activity in subendocardial muscle of left ventricle. Nat. Commun. 12, 5784 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hortells, L., Meyer, E. C., Thomas, Z. M. & Yutzey, K. E. Periostin-expressing Schwann cells and endoneurial cardiac fibroblasts contribute to sympathetic nerve fasciculation after birth. J. Mol. Cell. Cardiol. 154, 124–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Davis, J. & Molkentin, J. D. Myofibroblasts: trust your heart and let fate decide. J. Mol. Cell. Cardiol. 70, 9–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Tallquist, M. D. & Molkentin, J. D. Redefining the identity of cardiac fibroblasts. Nat. Rev. Cardiol. 14, 484–491 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Frangogiannis, N. G., Michael, L. H. & Entman, M. L. Myofibroblasts in reperfused myocardial infarcts express the embryonic form of smooth muscle myosin heavy chain (SMemb). Cardiovasc. Res. 48, 89–100 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat. Rev. Mol. Cell Biol. 3, 349–363 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Serini, G. et al. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. J. Cell Biol. 142, 873–881 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cleutjens, J. P., Verluyten, M. J., Smiths, J. F. & Daemen, M. J. Collagen remodeling after myocardial infarction in the rat heart. Am. J. Pathol. 147, 325–338 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. van Putten, S., Shafieyan, Y. & Hinz, B. Mechanical control of cardiac myofibroblasts. J. Mol. Cell. Cardiol. 93, 133–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  56. Cawston, T. E. & Young, D. A. Proteinases involved in matrix turnover during cartilage and bone breakdown. Cell Tissue Res. 339, 221–235 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Umbarkar, P., Ejantkar, S., Tousif, S. & Lal, H. Mechanisms of fibroblast activation and myocardial fibrosis: lessons learned from FB-specific conditional mouse models. Cells 10, 2412 (2021).

  59. Frangogiannis, N. G. Cardiac fibrosis. Cardiovasc. Res. 117, 1450–1488 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Molkentin, J. D. et al. Fibroblast-specific genetic manipulation of p38 mitogen-activated protein kinase in vivo reveals its central regulatory role in fibrosis. Circulation 136, 549–561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and function in the injured heart. Nat. Commun. 7, 12260 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Maruyama, S. et al. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol. Med. 8, 949–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rainer, P. P. et al. Cardiomyocyte-specific transforming growth factor β suppression blocks neutrophil infiltration, augments multiple cytoprotective cascades, and reduces early mortality after myocardial infarction. Circ. Res. 114, 1246–1257 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Teekakirikul, P. et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J. Clin. Invest. 120, 3520–3529 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Adiarto, S. et al. ET-1 from endothelial cells is required for complete angiotensin II-induced cardiac fibrosis and hypertrophy. Life Sci. 91, 651–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Simoes, F. C. et al. Macrophages directly contribute collagen to scar formation during zebrafish heart regeneration and mouse heart repair. Nat. Commun. 11, 600 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Khalil, H. et al. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest. 127, 3770–3783 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bhandary, B. et al. Cardiac fibrosis in proteotoxic cardiac disease is dependent upon myofibroblast TGF-β signaling. J. Am. Heart Assoc. 7, e010013 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meng, Q. et al. Myofibroblast-specific TGFβ receptor II signaling in the fibrotic response to cardiac myosin binding protein C-induced cardiomyopathy. Circ. Res. 123, 1285–1297 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xiang, F. L., Fang, M. & Yutzey, K. E. Loss of β-catenin in resident cardiac fibroblasts attenuates fibrosis induced by pressure overload in mice. Nat. Commun. 8, 712 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Giordano, C., Francone, M., Cundari, G., Pisano, A. & d’Amati, G. Myocardial fibrosis: morphologic patterns and role of imaging in diagnosis and prognostication. Cardiovasc. Pathol. 56, 107391 (2022).

    Article  PubMed  Google Scholar 

  73. Zou, Y. et al. Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat. Cell Biol. 6, 499–506 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. Kim, J., Eckhart, A. D., Eguchi, S. & Koch, W. J. β-adrenergic receptor-mediated DNA synthesis in cardiac fibroblasts is dependent on transactivation of the epidermal growth factor receptor and subsequent activation of extracellular signal-regulated kinases. J. Biol. Chem. 277, 32116–32123 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Travers, J. G. et al. Pharmacological and activated fibroblast targeting of Gβγ–GRK2 after myocardial ischemia attenuates heart failure progression. J. Am. Coll. Cardiol. 70, 958–971 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Rurik, J. G., Aghajanian, H. & Epstein, J. A. Immune cells and immunotherapy for cardiac injury and repair. Circ. Res. 128, 1766–1779 (2021).

    Article  CAS  PubMed  Google Scholar 

  77. Smolgovsky, S., Ibeh, U., Tamayo, T. P. & Alcaide, P. Adding insult to injury—inflammation at the heart of cardiac fibrosis. Cell. Signal. 77, 109828 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Dai, Z., Aoki, T., Fukumoto, Y. & Shimokawa, H. Coronary perivascular fibrosis is associated with impairment of coronary blood flow in patients with non-ischemic heart failure. J. Cardiol. 60, 416–421 (2012).

    Article  PubMed  Google Scholar 

  79. Giordano, C., Francone, M., Cundari, G., Pisano, A. & d’Amati, G. Myocardial fibrosis: morphologic patterns and role of imaging in diagnosis and prognostication. Cardiovasc. Pathol. 56, 107391 (2021).

    Article  PubMed  Google Scholar 

  80. Liu, M., Lopez de Juan Abad, B. & Cheng, K. Cardiac fibrosis: myofibroblast-mediated pathological regulation and drug delivery strategies. Adv. Drug Deliv. Rev. 173, 504–519 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tarbit, E., Singh, I., Peart, J. N. & Rose’Meyer, R. B. Biomarkers for the identification of cardiac fibroblast and myofibroblast cells. Heart Fail. Rev. 24, 1–15 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Bujak, M. et al. Interleukin-1 receptor type I signaling critically regulates infarct healing and cardiac remodeling. Am. J. Pathol. 173, 57–67 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Kanellakis, P., Ditiatkovski, M., Kostolias, G. & Bobik, A. A pro-fibrotic role for interleukin-4 in cardiac pressure overload. Cardiovasc. Res. 95, 77–85 (2012).

    Article  CAS  PubMed  Google Scholar 

  84. Ma, F. et al. Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS ONE 7, e35144 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Peng, H. et al. Profibrotic role for interleukin-4 in cardiac remodeling and dysfunction. Hypertension 66, 582–589 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Leask, A. Getting to the heart of the matter: new insights into cardiac fibrosis. Circ. Res. 116, 1269–1276 (2015).

    Article  CAS  PubMed  Google Scholar 

  87. Cho, N., Razipour, S. E. & McCain, M. L. Featured article: TGF-β1 dominates extracellular matrix rigidity for inducing differentiation of human cardiac fibroblasts to myofibroblasts. Exp. Biol. Med. 243, 601–612 (2018).

    Article  CAS  Google Scholar 

  88. Koitabashi, N. et al. Pivotal role of cardiomyocyte TGF-β signaling in the murine pathological response to sustained pressure overload. J. Clin. Invest. 121, 2301–2312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Anderton, M. J. et al. Induction of heart valve lesions by small-molecule ALK5 inhibitors. Toxicol. Pathol. 39, 916–924 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Mitra, M. S. et al. A potent pan-TGFβ neutralizing monoclonal antibody elicits cardiovascular toxicity in mice and cynomolgus monkeys. Toxicol. Sci. 175, 24–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Herbertz, S. et al. Clinical development of galunisertib (LY2157299 monohydrate), a small molecule inhibitor of transforming growth factor-β signaling pathway. Drug Des. Devel. Ther. 9, 4479–4499 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Lee, K. W. et al. Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation 114, 1703–1712 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nguyen, D. T., Ding, C., Wilson, E., Marcus, G. M. & Olgin, J. E. Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm 7, 1438–1445 (2010).

    Article  PubMed  Google Scholar 

  94. Lewis, G. A. et al. Pirfenidone in heart failure with preserved ejection fraction: a randomized phase 2 trial. Nat. Med. 27, 1477–1482 (2021).

    Article  CAS  PubMed  Google Scholar 

  95. Kojonazarov, B. et al. p38 MAPK inhibition improves heart function in pressure-loaded right ventricular hypertrophy. Am. J. Respir. Cell Mol. Biol. 57, 603–614 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Wissing, E. R. et al. P38α MAPK underlies muscular dystrophy and myofiber death through a Bax-dependent mechanism. Hum. Mol. Genet. 23, 5452–5463 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Burke, R. M. et al. Prevention of fibrosis and pathological cardiac remodeling by salinomycin. Circ. Res. 128, 1663–1678 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Fernandez-Ruiz, I. Cardioprotection: IL-11 is a potential therapeutic target in cardiovascular fibrosis. Nat. Rev. Cardiol. 15, 1 (2018).

    Article  PubMed  Google Scholar 

  99. Corden, B., Adami, E., Sweeney, M., Schafer, S. & Cook, S. A. IL-11 in cardiac and renal fibrosis: late to the party but a central player. Br. J. Pharmacol. 177, 1695–1708 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Ghali, R. et al. IL-33 (interleukin 33)/sST2 axis in hypertension and heart failure. Hypertension 72, 818–828 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Vianello, E., Dozio, E., Tacchini, L., Frati, L. & Corsi Romanelli, M. M. ST2/IL-33 signaling in cardiac fibrosis. Int. J. Biochem. Cell Biol. 116, 105619 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Meng, F., Xie, B. & Martin, J. F. Targeting the Hippo pathway in heart repair. Cardiovasc. Res. https://doi.org/10.1093/cvr/cvab291 (2021).

  103. Herum, K. M., Choppe, J., Kumar, A., Engler, A. J. & McCulloch, A. D. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol. Biol. Cell 28, 1871–1882 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Saucerman, J. J., Tan, P. M., Buchholz, K. S., McCulloch, A. D. & Omens, J. H. Mechanical regulation of gene expression in cardiac myocytes and fibroblasts. Nat. Rev. Cardiol. 16, 361–378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  105. MacKenna, D. A., Dolfi, F., Vuori, K. & Ruoslahti, E. Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J. Clin. Invest. 101, 301–310 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Singh, A. et al. Hippo signaling mediators Yap and Taz are required in the epicardium for coronary vasculature development. Cell Rep. 15, 1384–1393 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xiao, Y. et al. Hippo signaling plays an essential role in cell state transitions during cardiac fibroblast development. Dev. Cell 45, 153–169 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Xiao, Y. et al. Hippo pathway deletion in adult resting cardiac fibroblasts initiates a cell state transition with spontaneous and self-sustaining fibrosis. Genes Dev. 33, 1491–1505 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Francisco, J. et al. Blockade of fibroblast YAP attenuates cardiac fibrosis and dysfunction through MRTF-A inhibition. JACC Basic Transl. Sci. 5, 931–945 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Francisco, J. et al. AAV-mediated YAP expression in cardiac fibroblasts promotes inflammation and increases fibrosis. Sci. Rep. 11, 10553 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schultz, F. et al. Cardiomyocyte–myofibroblast contact dynamism is modulated by connexin-43. FASEB J. 33, 10453–10468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lapidos, K. A., Kakkar, R. & McNally, E. M. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ. Res. 94, 1023–1031 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Shai, S. Y. et al. Cardiac myocyte-specific excision of the β1 integrin gene results in myocardial fibrosis and cardiac failure. Circ. Res. 90, 458–464 (2002).

    Article  CAS  PubMed  Google Scholar 

  114. Manso, A. M. et al. Loss of mouse cardiomyocyte talin-1 and talin-2 leads to β-1 integrin reduction, costameric instability, and dilated cardiomyopathy. Proc. Natl Acad. Sci. USA 114, E6250–E6259 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Okada, H. et al. Integrins protect cardiomyocytes from ischemia/reperfusion injury. J. Clin. Invest. 123, 4294–4308 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seelbinder, B. et al. Nuclear deformation guides chromatin reorganization in cardiac development and disease. Nat. Biomed. Eng. 5, 1500–1516 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Ferrari, I. & Vagnozzi, R. J. Mechanisms and strategies for a therapeutic cardiac immune response. J. Mol. Cell. Cardiol. 158, 82–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Zaidi, Y., Aguilar, E. G., Troncoso, M., Ilatovskaya, D. V. & DeLeon-Pennell, K. Y. Immune regulation of cardiac fibrosis post myocardial infarction. Cell. Signal. 77, 109837 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Lai, S. L., Marin-Juez, R. & Stainier, D. Y. R. Immune responses in cardiac repair and regeneration: a comparative point of view. Cell. Mol. Life Sci. 76, 1365–1380 (2019).

    Article  CAS  PubMed  Google Scholar 

  120. Pinto, A. R. et al. Revisiting cardiac cellular composition. Circ. Res. 118, 400–409 (2016).

    Article  CAS  PubMed  Google Scholar 

  121. Litvinukova, M. et al. Cells of the adult human heart. Nature 588, 466–472 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bajpai, G. et al. Tissue resident CCR2 and CCR2+ cardiac macrophages differentially orchestrate monocyte recruitment and fate specification following myocardial injury. Circ. Res. 124, 263–278 (2019). This study uncovered foundational differences between the injury-induced responses of tissue-resident macrophages that were CCR2 and recruited monocyte-derived CCR2+ macrophages.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bajpai, G. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat. Med. 24, 1234–1245 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wong, N. R. et al. Resident cardiac macrophages mediate adaptive myocardial remodeling. Immunity 54, 2072–2088 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a network model of macrophage function. Circ. Res. 119, 414–417 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lindsey, M. L., Saucerman, J. J. & DeLeon-Pennell, K. Y. Knowledge gaps to understanding cardiac macrophage polarization following myocardial infarction. Biochim. Biophys. Acta 1862, 2288–2292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Dick, S. A. et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction. Nat. Immunol. 20, 29–39 (2019). scRNA-seq was used to identify a number of transcriptionally distinct macrophage populations in the heart in response to injury, including genetic characterization of resident macrophages that are beneficial to heart function.

    Article  CAS  PubMed  Google Scholar 

  128. Epelman, S., Lavine, K. J. & Randolph, G. J. Origin and functions of tissue macrophages. Immunity 41, 21–35 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Revelo, X. S. et al. Cardiac resident macrophages prevent fibrosis and stimulate angiogenesis. Circ. Res. 129, 1086–1101 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shiraishi, M. et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J. Clin. Invest. 126, 2151–2166 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Yan, X. et al. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J. Mol. Cell. Cardiol. 62, 24–35 (2013).

    Article  CAS  PubMed  Google Scholar 

  132. Vagnozzi, R. J. et al. An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577, 405–409 (2020).

    Article  CAS  PubMed  Google Scholar 

  133. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  134. Mouton, A. J. et al. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res. Cardiol. 113, 26 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gao, Y., Qian, N., Xu, J. & Wang, Y. The roles of macrophages in heart regeneration and repair after injury. Front. Cardiovasc. Med. 8, 744615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aurora, A. B. et al. Macrophages are required for neonatal heart regeneration. J. Clin. Invest. 124, 1382–1392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Godwin, J. W., Debuque, R., Salimova, E. & Rosenthal, N. A. Heart regeneration in the salamander relies on macrophage-mediated control of fibroblast activation and the extracellular landscape. NPJ Regen. Med. 2, 22 (2017).

  138. Maron, B. A. et al. Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes. Nat. Commun. 12, 873 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Xie, Q. et al. High-mobility group A1 promotes cardiac fibrosis by upregulating FOXO1 in fibroblasts. Front. Cell Dev. Biol. 9, 666422 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Arcidiacono, B. et al. HMGA1 is a novel transcriptional regulator of the FoxO1 gene. Endocrine 60, 56–64 (2018).

    Article  CAS  PubMed  Google Scholar 

  141. Xin, Z. et al. FOXO1/3: potential suppressors of fibrosis. Ageing Res. Rev. 41, 42–52 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Cai, Z. L. et al. The effect of HMGA1 in LPS-induced myocardial inflammation. Int. J. Biol. Sci. 16, 1798–1810 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. De Rosa, S. et al. HMGA1 is a novel candidate gene for myocardial infarction susceptibility. Int. J. Cardiol. 227, 331–334 (2017).

    Article  PubMed  Google Scholar 

  144. Chiefari, E. et al. Functional variants of the HMGA1 gene and type 2 diabetes mellitus. J. Am. Med. Assoc. 305, 903–912 (2011).

    Article  CAS  Google Scholar 

  145. Gillette, T. G. & Hill, J. A. Readers, writers, and erasers: chromatin as the whiteboard of heart disease. Circ. Res. 116, 1245–1253 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Jeong, M. Y. et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci. Transl. Med. 10, eaao0144 (2018).

  147. Wallner, M. et al. HDAC inhibition improves cardiopulmonary function in a feline model of diastolic dysfunction. Sci. Transl. Med. 12, eaay7205 (2020).

  148. Travers, J. G. et al. HDAC inhibition reverses preexisting diastolic dysfunction and blocks covert extracellular matrix remodeling. Circulation 143, 1874–1890 (2021). This paper demonstrated that the HDAC inhibitor givinostat modulated fibroblast activation and improved cardiac function in a mouse model of HFpEF; its findings also illustrate advantages of monitoring cellular expression of ECM-modifying genes and proteins, even beyond overt fibrotic disease.

    Article  CAS  PubMed  Google Scholar 

  149. Anand, P. et al. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154, 569–582 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Spiltoir, J. I. et al. BET acetyl-lysine binding proteins control pathological cardiac hypertrophy. J. Mol. Cell. Cardiol. 63, 175–179 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Alexanian, M. et al. A transcriptional switch governs fibroblast activation in heart disease. Nature 595, 438–443 (2021). This study used the BET inhibitor JQ1 to reversibly mediate MEOX1-induced cardiac fibroblast activation in response to pressure overload hypertrophy, highlighting the dynamics of fibroblast differentiation and activation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bugg, D. et al. MBNL1 drives dynamic transitions between fibroblasts and myofibroblasts in cardiac wound healing. Cell Stem Cell 29, 419–433 (2022).

    Article  CAS  PubMed  Google Scholar 

  153. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). In this paper, the authors used recent advances in lipid nanoparticle technology to engineer CAR T cells in vivo that effectively targeted FAP-expressing fibroblasts to diminish angiotensin II-induced cardiac injury in mice.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the researchers and studies that have contributed to our knowledge of cardiac development and fibrosis but were not discussed here due to space and reference limitations. This work was supported by grants from the NIH (R01HL105924 and R01HL142217) to J.D.M. and a Career Development award from the American Heart Association (20CDA35310504) to Q.M.

Author information

Authors and Affiliations

Authors

Contributions

S.L.K.B., Q.M. and J.D.M wrote or edited the manuscript.

Corresponding author

Correspondence to Jeffery D. Molkentin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cardiovascular Research thanks April Stempien-Otero and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bowers, S.L.K., Meng, Q. & Molkentin, J.D. Fibroblasts orchestrate cellular crosstalk in the heart through the ECM. Nat Cardiovasc Res 1, 312–321 (2022). https://doi.org/10.1038/s44161-022-00043-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44161-022-00043-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing