Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atomically precise semiconductor clusters of rare-earth tellurides

Abstract

Atomically precise clusters are important for understanding structure–property relationships of bulk materials. Here we report clusters of the general formula [K(2,2,2-cryptand)]2[(μ5-Cp*RE)66333-Te3)(μ-κ22-Te2)(μ32:κ:κ1-Te2)(μ3-Te)3] (Cp*, pentamethylcyclopentadienyl; RE = Y, Gd, Tb, Ho, Er). They are potential precursors to rare-earth tellurides, a class of topical quantum materials with interesting thermoelectric, magnetic, semiconducting and charge density wave properties. Crystallographic analyses reveal a common trigonal antiprismatic core of RE6Te10 with six RE atoms supported by three different types of tellurido ligands, namely Te2–, Te22– dianions, and a previously unknown tri-tellurido ligand Te34–, upon which the six RE atoms are hinged into a pseudo-D3d arrangement. Density functional theory studies reveal that the linear hypervalent Te34– ion has the electronic structure characteristics of a three-centre, four-electron bond. Studies by ultraviolet–visible–near infrared spectroscopy and theoretical analyses suggest that these clusters are semiconductors with comparable band gaps to those of monocrystalline silicon and gallium arsenide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Core motifs of rare-earth telluride clusters.
Fig. 2: Ball-and-stick depiction of the crystal structure in Y6Te10.
Fig. 3: AdNDP analyses of the Te–Te bonds in Y6Te10.
Fig. 4: Chemical bonding analysis of Y6Te10 cluster.
Fig. 5: Electron localization analysis of Y6Te10 cluster.
Fig. 6: Evolution of the (F(R))2 versus curves as a function of composition for RE6Te10 at room temperature.

Similar content being viewed by others

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2265362 (Y6Te10), 2265363 (Gd6Te10), 2265364 (Tb6Te10), 2265366 (Ho6Te10) and 2265367 (Er6Te10). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. The experimental data and the characterization data are available in the Supplementary Information. Source data are provided with this paper.

References

  1. Cheikh, D. et al. Praseodymium telluride: a high-temperature, high-ZT thermoelectric material. Joule 2, 698–709 (2018).

    Article  CAS  Google Scholar 

  2. Slade, T. J. et al. Charge-carrier-mediated lattice softening contributes to high ZT in thermoelectric semiconductors. Joule 5, 1168–1182 (2021).

    Article  CAS  Google Scholar 

  3. Kogar, A. et al. Light-induced charge density wave in LaTe3. Nat. Phys. 16, 159–163 (2020).

    Article  CAS  Google Scholar 

  4. Wang, Y. et al. Axial Higgs mode detected by quantum pathway interference in RTe3. Nature 606, 896–901 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Straquadine, J. A. W., Ikeda, M. S. & Fisher, I. R. Evidence for realignment of the charge density wave state in ErTe3 and TmTe3 under uniaxial stress via elastocaloric and elastoresistivity measurements. Phys. Rev. X 12, 021046 (2022).

    CAS  Google Scholar 

  6. Zocco, D. A. et al. Pressure dependence of the charge-density-wave and superconducting states in GdTe3, TbTe3, and DyTe3. Phys. Rev. B 91, 205114 (2015).

    Article  Google Scholar 

  7. Lei, S. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang, P. T. et al. Pressured-induced superconducting phase with large upper critical field and concomitant enhancement of antiferromagnetic transition in EuTe2. Nat. Commun. 13, 2975 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen, P. et al. Recent advances in 2D rare earth materials. Adv. Funct. Mater. 31, 2008790 (2021).

    Article  CAS  Google Scholar 

  10. Yumigeta, K. et al. Advances in rare-earth tritelluride quantum materials: structure, properties, and synthesis. Adv. Sci. 8, 2004762 (2021).

    Article  CAS  Google Scholar 

  11. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Jing, W. et al. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: from atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 123, 5948–6002 (2023).

    Article  CAS  PubMed  Google Scholar 

  13. Doud, E. A. et al. Superatoms in materials science. Nat. Rev. Mater. 5, 371–387 (2020).

    Article  Google Scholar 

  14. Du, Y., Sheng, H., Astruc, D. & Zhu, M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem. Rev. 120, 526–622 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Pun, A. B., Mazzotti, S., Mule, A. S. & Norris, D. J. Understanding discrete growth in semiconductor nanocrystals: nanoplatelets and magic-sized clusters. Acc. Chem. Res. 54, 1545–1554 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Sarker, J. C. & Hogarth, G. Dithiocarbamate complexes as single source precursors to nanoscale binary, ternary and quaternary metal sulfides. Chem. Rev. 121, 6057–6123 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Pearson, R. G. Hard and soft acids and bases. J. Am. Chem. Soc. 85, 3533–3539 (1963).

    Article  CAS  Google Scholar 

  18. Freedman, D., Emge, T. J. & Brennan, J. G. Chalcogen-rich lanthanide clusters: compounds with Te2−, (TeTe)2−, TePh, TeTePh, (TeTeTe(Ph)TeTe)5−, and [(TeTe)4TePh]9− ligands; single source precursors to solid-state lanthanide tellurides. Inorg. Chem. 41, 492–500 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Norton, K. et al. Lanthanide oxochalcogenido clusters. Dalton Trans. 39, 6794–6800 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Cary, D. R. & Arnold, J. Preparation of lanthanide tellurolates and evidence for the formation of cluster intermediates in their thermal decomposition to bulk metal tellurides. J. Am. Chem. Soc. 115, 2520–2521 (1993).

    Article  CAS  Google Scholar 

  21. Evans, W. J., Rabe, G. W., Ziller, J. W. & Doedens, R. J. Utility of organosamarium(II) reagents in the formation of polyatomic group 16 element anions: synthesis and structure of [(C5Me5)2Sm]2(E3)(THF), [(C5Me5)2Sm(THF)]2(E), and related species (E = S, Se, Te). Inorg. Chem. 33, 2719–2726 (1994).

    Article  CAS  Google Scholar 

  22. Zalkin, A. & Berg, D. J. Bis[bis(pentamethylcyclopentadienyl)ytterbium(III)] ditelluride. Acta Crystallogr. C 44, 1488–1489 (1988).

    Article  Google Scholar 

  23. Cisar, A. & Corbett, J. D. Synthesis and crystal structure of a salt containing the tritelluride(2–) anion. Inorg. Chem. 16, 632–635 (1977).

    Article  CAS  Google Scholar 

  24. Smiles, D. E., Wu, G., Hrobárik, P. & Hayton, T. W. Use of 77Se and 125Te NMR spectroscopy to probe covalency of the actinide-chalcogen bonding in [Th(En){N(SiMe3)2}3] (E = Se, Te; n = 1, 2) and their oxo-uranium(VI) congeners. J. Am. Chem. Soc. 138, 814–825 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Yi, C., Xu, Z., Chen, L. & Ren, W. Cerocene and lanthanocene chalcogenides: synthesis, structure, and luminescence. Inorg. Chem. 61, 5373–5379 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Hillier, A. C., Liu, S.-Y., Sella, A. & Elsegood, M. R. J. (PhTe)3: the anionic tellurium analogue of I3. Angew. Chem. Int. Ed. 38, 2745–2747 (1999).

    Article  CAS  Google Scholar 

  27. Pyykkö, P. & Atsumi, M. Molecular single-bond covalent radii for elements 1–118. Chem. Eur. J. 15, 186–197 (2009).

    Article  PubMed  Google Scholar 

  28. Braïda, B. & Hiberty, P. C. The essential role of charge-shift bonding in hypervalent prototype XeF2. Nat. Chem. 5, 417–422 (2013).

    Article  PubMed  Google Scholar 

  29. Svensson, P. H. & Kloo, L. Synthesis, structure, and bonding in polyiodide and metal iodide−iodine systems. Chem. Rev. 103, 1649–1684 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Evans, W. J., Rabe, G. W., Ansari, M. A. & Ziller, J. W. Polynuclear lanthanide complexes: formation of a selenium-centered Sm6 complex, [{(C5Me5)Sm}6Se11]. Angew. Chem. Int. Ed. 33, 2110–2111 (1994).

    Article  Google Scholar 

  31. Zubarev, D. Y. & Boldyrev, A. I. Developing paradigms of chemical bonding: adaptive natural density partitioning. Phys. Chem. Chem. Phys. 10, 5207–5217 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Sergeeva, A. P., Zubarev, D. Y., Zhai, H.-J., Boldyrev, A. I. & Wang, L.-S. A photoelectron spectroscopic and theoretical study of B16 and B162−: an all-boron naphthalene. J. Am. Chem. Soc. 130, 7244–7246 (2008).

  33. te Velde, G. et al. Chemistry with ADF. J. Comput. Chem. 22, 931–967 (2001).

    Article  Google Scholar 

  34. Adamo, C. & Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999).

    Article  CAS  Google Scholar 

  35. Van Lenthe, E. & Baerends, E. J. Optimized Slater-type basis sets for the elements 1–118. J. Comput. Chem. 24, 1142–1156 (2003).

    Article  PubMed  Google Scholar 

  36. van Lenthe, E., van Leeuwen, R., Baerends, E. J. & Snijders, J. G. Relativistic regular two-component Hamiltonians. Int. J. Quantum Chem. 57, 281–293 (1996).

    Article  Google Scholar 

  37. Michalak, A., Mitoraj, M. & Ziegler, T. Bond orbitals from chemical valence theory. J. Phys. Chem. A 112, 1933–1939 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Mitoraj, M. P., Michalak, A. & Ziegler, T. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5, 962–975 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Becke, A. D. & Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 92, 5397–5403 (1990).

    Article  CAS  Google Scholar 

  40. Bader, R. F. W. Atoms in Molecules: A Quantum Theory (Oxford Univ. Press, 1990).

    Book  Google Scholar 

  41. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  42. Lu, J.-B. et al. Norm-conserving pseudopotentials and basis sets to explore lanthanide chemistry in complex environments. J. Chem. Theory Comput. 15, 5987–5997 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Van Gisbergen, S. J. A., Snijders, J. G. & Baerends, E. J. Implementation of time-dependent density functional response equations. Comput. Phys. Commun. 118, 119–138 (1999).

    Article  Google Scholar 

  44. Makuła, P., Pacia, M. & Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. J. Phys. Chem. Lett. 9, 6814–6817 (2018).

    Article  PubMed  Google Scholar 

  45. Woods-Robinson, R. et al. Wide band gap chalcogenide semiconductors. Chem. Rev. 120, 4007–4055 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Han, S.-S., Yu, S.-X., Liu, W. & Guo, S.-P. KNa0.78Eu0.27In3.80B12S12: a novel hexanary thioborate featuring a B12S12 cluster and diverse InSx (x = 4, 5, 6) units. Inorg. Chem. Front. 9, 2462–2469 (2022).

    Article  CAS  Google Scholar 

  47. Chen, Z.-X., Liu, W. & Guo, S.-P. A review of structures and physical properties of rare earth chalcophosphates. Coord. Chem. Rev. 474, 214870 (2023).

    Article  CAS  Google Scholar 

  48. Nayak, P. K. & Cahen, D. Updated assessment of possibilities and limits for solar cells. Adv. Mater. 26, 1622–1628 (2014).

    Article  CAS  PubMed  Google Scholar 

  49. Bootharaju, M. S. et al. Structure of a subnanometer-sized semiconductor Cd14Se13 cluster. Chem 8, 2978–2989 (2022).

    Article  CAS  Google Scholar 

  50. Huang, W., Upton, B. M., Khan, S. I. & Diaconescu, P. L. Synthesis and characterization of paramagnetic lanthanide benzyl complexes. Organometallics 32, 1379–1386 (2013).

    Article  CAS  Google Scholar 

  51. Evans, W. J., Kozimor, S. A., Ziller, J. W. & Kaltsoyannis, N. Structure, reactivity, and density functional theory analysis of the six-electron reductant, [(C5Me5)2U]2(μ-η6:η6-C6H6), synthesized via a new mode of (C5Me5)3M reactivity. J. Am. Chem. Soc. 126, 14533–14547 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Bergbreiter, D. E. & Killough, J. M. Reactions of potassium-graphite. J. Am. Chem. Soc. 100, 2126–2134 (1978).

    Article  CAS  Google Scholar 

  53. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article  CAS  Google Scholar 

  54. Sheldrick, G. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  Google Scholar 

  55. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (92261203, 22101116, 21971106 and 22033005), the Key Laboratory of Rare-Earth Chemistry of Guangdong Higher Education Institutes (2022KSYS006), the Stable Support Plan Programme of Shenzhen Natural Science Fund (20200925161141006), the Shenzhen Fundamental Research Programme (JCYJ20220530115001002 and JCYJ20220818100417037), the National Key R&D Project (2022YFA1503900 and 2022YFA1503000) and the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002). Computational resources are provided by the Center for Computational Science and Engineering and the CHEM high-performance supercomputer cluster at SUSTech. We thank X.-Y. Chang for assistance with single-crystal X-ray diffraction studies and discussion. We also thank Z. Quan, L. Mao, Z. Luo and Y. Liu for assistance with the solid-state UV-Vis-NIR characterization and discussion.

Author information

Authors and Affiliations

Authors

Contributions

Y.-S.D. synthesized and characterized the compounds with the assistance of L.L.; Z.Z. designed the research project and directed the experiments. X.-L.J. performed the DFT computations under the guidance of C.-Q.X. and J.L. The writing of the paper was completed using contributions from all authors who have also approved the final version of the paper.

Corresponding authors

Correspondence to Jun Li or Zhiping Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–9, Figs. 1–12, Discussion and References.

Supplementary Data 1

Crystallographic data of Y6Te10, CCDC 2265362.

Supplementary Data 2

Crystallographic data of Gd6Te10, CCDC 2265363.

Supplementary Data 3

Crystallographic data of Tb6Te10, CCDC 2265364.

Supplementary Data 4

Crystallographic data of Ho6Te10, CCDC 2265366.

Supplementary Data 5

Crystallographic data of Er6Te10, CCDC 2265367.

Source data

Source Data Fig. 5

EDA–NOCV results of Y6Te10.

Source Data Fig. 6

Data of solid-state UV-Vis-NIR.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, YS., Jiang, XL., Li, L. et al. Atomically precise semiconductor clusters of rare-earth tellurides. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00511-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00511-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing