Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Computational synthesis design for controlled degradation and revalorization

Abstract

Degradation of larger and undesired or harmful molecules into smaller and, ideally, value-added products is one of the most important facets of circular chemistry. However, this task may be cumbersome for chemists who are accustomed to planning syntheses using bond-forming, rather than bond-breaking, methodologies. This work describes a forward-synthesis algorithm that can guide such degradation-oriented analyses. This algorithm uses a broad knowledge-base of degradative and related reactions and applies them to arbitrary small-molecule feeds to generate large synthetic networks within which it then traces degradative pathways that are chemically sound and lead to value-added products. Predictions of the algorithm are validated by proof-of-concept experiments entailing degradation and revalorization of two biomass feeds, d-glucose and quinine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Degradative reaction networks.
Fig. 2: Scoring of degradative pathways according to process criteria.
Fig. 3: Examples of computer-designed degradation pathways starting from different feeds.
Fig. 4: Degradation of d-glucose into value-added 1,4-diaminobutane, 5.
Fig. 5: Degradation of quinine into smaller but value-added chemicals.

Similar content being viewed by others

Data availability

The User Manual and login details are available in Supplementary Information, section 1. The use of Allchemy’s degradation module is further illustrated in Supplementary Video 1. All degradation pathways described in this work and experimental validation data supporting this study are available in Supplementary Information, sections 2 and 3.

Code availability

The interactive Allchemy web application is freely available for academic users at https://degradation.allchemy.net (due to server capacity, access is limited to five concurrent academic users on a rolling basis and to two-week slots). To obtain access, please send an email (from your academic address) to admin@allchemy.net. Reaction rules are proprietary but their coding is explained in Supplementary Information, section 1.4. The code for the forward-expand reaction networks is provided at https://zenodo.org/records/10034684 or via a DOI search engine under https://doi.org/10.5281/zenodo.10034684.

References

  1. Szymkuć, S. et al. Computer‐assisted synthetic planning: the end of the beginning. Angew. Chem. Int. Ed. 55, 5904–5937 (2016).

    Article  Google Scholar 

  2. Mikulak-Klucznik, B. et al. Computational planning of the synthesis of complex natural products. Nature 588, 83–88 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Klucznik, T. et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem 4, 522–532 (2018).

    Article  CAS  Google Scholar 

  4. Lin, Y., Zhang, R., Wang, D. & Cernak, T. Computer-aided key step generation in alkaloid total synthesis. Science 379, 453–457 (2023).

    Article  CAS  PubMed  Google Scholar 

  5. Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Liu, B. et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent. Sci. 3, 1103–1113 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, eaax1566 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Schwaller, P. et al. Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy. Chem. Sci. 11, 3316–3325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rother, D. & Malzacher, S. Computer-aided enzymatic retrosynthesis. Nat. Catal. 4, 92–93 (2021).

    Article  CAS  Google Scholar 

  10. Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. de Almeida, A. F., Moreira, R. & Rodrigues, T. Synthetic organic chemistry driven by artificial intelligence. Nat. Rev. Chem. 3, 589–604 (2019).

    Article  Google Scholar 

  12. Schwaller, P. et al. Machine intelligence for chemical reaction space. Wiley Interdiscip. Rev. Comput. Mol. Sci. 12, e1604 (2022).

    Article  Google Scholar 

  13. Strieth-Kalthoff, F., Sandfort, F., Segler, M. H. S. & Glorius, F. Machine learning the ropes: principles, applications and directions in synthetic chemistry. Chem. Soc. Rev. 49, 6154–6168 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Molga, K., Gajewska, E. P., Szymkuć, S. & Grzybowski, B. A. The logic of translating chemical knowledge into machine-processable forms: a modern playground for physical-organic chemistry. React. Chem. Eng. 4, 1506–1521 (2019).

    Article  CAS  Google Scholar 

  15. Molga, K. et al. A computer algorithm to discover iterative sequences of organic reactions. Nat. Synth. 1, 49–58 (2022).

    Article  Google Scholar 

  16. Roszak, R., Beker, W., Molga, K. & Grzybowski, B. A. Rapid and accurate prediction of pKa values of C–H acids using graph convolutional neural networks. J. Am. Chem. Soc. 141, 17142–17149 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Beker, W., Gajewska, E. P., Badowski, T. & Grzybowski, B. A. Prediction of major regio‐, site‐, and diastereoisomers in Diels–Alder reactions by using machine‐learning: the importance of physically meaningful descriptors. Angew. Chem. Int. Ed. 58, 4515–4519 (2019).

    Article  CAS  Google Scholar 

  18. Guan, Y. et al. Regio-selectivity prediction with a machine-learned reaction representation and on-the-fly quantum mechanical descriptors. Chem. Sci. 12, 2198–2208 (2021).

    Article  CAS  Google Scholar 

  19. Wołos, A. et al. Synthetic connectivity, emergence, and self-regeneration in the network of prebiotic chemistry. Science 369, eaaw1955 (2020).

    Article  PubMed  Google Scholar 

  20. Wołos, A. et al. Computer-designed repurposing of chemical wastes into drugs. Nature 604, 668–676 (2022).

    Article  PubMed  Google Scholar 

  21. Skoraczyński, G. et al. Predicting the outcomes of organic reactions via machine learning: are current descriptors sufficient? Sci. Rep. 7, 3582 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gao, W., Mercado, R. & Coley, C. W. Amortized tree generation for bottom-up synthesis planning and synthesizable molecular design. Preprint at https://arxiv.org/abs/2110.06389 (2021).

  23. Granda, J. M., Donina, L., Dragone, V., Long, D. L. & Cronin, L. Controlling an organic synthesis robot with machine learning to search for new reactivity. Nature 559, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Robinson, W. E. et al. Environmental conditions drive self-organization of reaction pathways in a prebiotic reaction network. Nat. Chem. 14, 623–631 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Coley, C. W., Barzilay, R., Jaakkola, T. S., Green, W. H. & Jensen, K. F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci. 3, 434–443 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Keijer, T., Bakker, V. & Slootweg, J. C. Circular chemistry to enable a circular economy. Nat. Chem. 11, 190–195 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Kümmerer, K., Clark, J. H. & Zuin, V. G. Rethinking chemistry for a circular economy. Science 367, 369–370 (2020).

    Article  PubMed  Google Scholar 

  28. Zhang, Y., Qi, M. Y., Tang, Z. R. & Xu, Y. J. Photoredox-catalyzed plastic waste conversion: nonselective degradation versus selective synthesis. ACS Catal. 13, 3575–3590 (2023).

    Article  CAS  Google Scholar 

  29. Sobol, Ł., Dyjakon, A., & Soukup, K. Dioxins and furans in biochars, hydrochars and torreficates produced by thermochemical conversion of biomass: a review. Environ. Chem. Lett. 21, 2225–2249 (2023).

  30. Jehanno, C. et al. Critical advances and future opportunities in upcycling commodity polymers. Nature 603, 803–814 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Coates, G. W. & Getzler, Y. D. Chemical recycling to monomer for an ideal, circular polymer economy. Nat. Rev. Mater. 5, 501–516 (2020).

    Article  CAS  Google Scholar 

  32. Zhang, F. et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization. Science 370, 437–441 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Trang, B. et al. Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S. & Löffler, F. E. Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature 424, 62–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Liang, X. et al. Highly efficient NaNO2‐catalyzed destruction of trichlorophenol using molecular oxygen. Angew. Chem. Int. Ed. 44, 5520–5523 (2005).

    Article  CAS  Google Scholar 

  36. Kumamaru, T. et al. Enhanced degradation of polychlorinated biphenyls by directed evolution of biphenyl dioxygenase. Nat. Biotechnol. 16, 663–666 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Meunier, B. Catalytic degradation of chlorinated phenols. Science 296, 270–271 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Smith, B. M. Catalytic methods for the destruction of chemical warfare agents under ambient conditions. Chem. Soc. Rev. 37, 470–478 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Rathi, B. S. & Kumar, P. S. Sustainable approach on the biodegradation of azo dyes: a short review. Curr. Opin. Green Sustain. Chem. 33, 100578 (2022).

    Article  Google Scholar 

  40. Antonetti, C., Licursi, D., Fulignati, S., Valentini, G. & Raspolli Galletti, A. M. New frontiers in the catalytic synthesis of levulinic acid: from sugars to raw and waste biomass as starting feedstock. Catalysts 6, 196 (2016).

    Article  Google Scholar 

  41. Liu, F. et al. Continuously processing waste lignin into high-value carbon nanotube fibers. Nat. Commun. 13, 5755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sun, Z., Balint, F., de Santi, A., Saravanakumar, E. & Barta, K. Bright side of lignin depolymerization: toward new platform chemicals. Chem. Rev. 118, 614–678 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, K., Jing, Y., Wang, Y. & Yan, N. A unified view on catalytic conversion of biomass and waste plastics. Nat. Rev. Chem. 6, 635–652 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Adams, J. P. et al. Development of GSK’s reagent guides—embedding sustainability into reagent selection. Green Chem. 15, 1542 (2013).

    Article  CAS  Google Scholar 

  45. Henderson, R. K., Hill, A. P., Redman, A. M. & Sneddon, H. F. Development of GSK’s acid and base selection guides. Green Chem. 17, 945–949 (2015).

    Article  CAS  Google Scholar 

  46. Alder, C. et al. Updating and further expanding GSK’s solvent sustainability guide. Green Chem. 18, 3879–3890 (2016).

    Article  CAS  Google Scholar 

  47. Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Zebec, Ž., Poberžnik, M. & Lobnik, A. Enzymatic hydrolysis of textile and cardboard waste as a glucose source for the production of limonene in Escherichia coli. Life 12, 1423 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pleissner, D. & Lin, C. S. K. Valorisation of food waste in biotechnological processes. Sustain. Chem. Process. 1, 1–6 (2013).

    Article  Google Scholar 

  50. Woodland, J. G. & Chibale, K. Quinine fever. Nat. Chem. 14, 112–112 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. GlaxoSmithKline Intellectual Property Development Ltd. Chemical compounds. WO patent 2020/202091 (2020).

  52. Trillium Therapeutics Inc. Heteroaromatic-fused imidazolyl amides, compositions and uses thereof as sting agonists. WO patent 2020/10451 (2020).

  53. Hunter Fleming Ltd. Steroid-hormone conjugates with polyamides and their therapeutic use as anti-cancer and angiostatic agents. WO patent 2005/116050 (2005).

  54. Pfizer INC. Adenosine A2A receptor antagonists. US patent 2008/242672 (2008).

  55. Cespi, D. et al. Life cycle assessment comparison of two ways for acrylonitrile production: the SOHIO process and an alternative route using propane. J. Clean. Prod. 69, 17–25 (2014).

    Article  CAS  Google Scholar 

  56. Diaminobutane (DAB), unique large scale production. AnQuore https://www.anqore.com/en/products/Diaminobutane (accessed 7 July 2023).

  57. Qi, L. et al. Catalytic conversion of fructose, glucose, and sucrose to 5-(hydroxymethyl) furfural and levulinic and formic acids in γ-valerolactone as a green solvent. ACS Catal. 4, 1470–1477 (2014).

    Article  CAS  Google Scholar 

  58. Dutta, S., Wu, L. & Mascal, M. Efficient, metal-free production of succinic acid by oxidation of biomass-derived levulinic acid with hydrogen peroxide. Green Chem. 17, 2335–2338 (2015).

    Article  CAS  Google Scholar 

  59. Battelle Memorial Institute. Process for producing N-methyl succinimide. WO patent 2004/58708 (2004).

  60. Ruan, S., Ruan, J., Chen, X. & Zhou, S. Facile dehydration of primary amides to nitriles catalyzed by lead salts: the anionic ligand matters. Mol. Catal. 499, 111313 (2021).

    Article  CAS  Google Scholar 

  61. Chemistry and Chemical Engineering Guangdong Laboratory; Beijing Yuji Science & Technology Co Ltd. Method for preparing nitrile through gas phase dehydration. Chinese patent 114057605 (2022).

  62. Zhou, X. et al. Discovery of novel inhibitors of human phosphoglycerate dehydrogenase by activity-directed combinatorial chemical synthesis strategy. Bioorg. Chem. 115, 105159 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Surivet, J. P. et al. Design, synthesis, and characterization of novel tetrahydropyran-based bacterial topoisomerase inhibitors with potent anti-gram-positive activity. J. Med. Chem. 56, 7396–7415 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Agouridas, C. et al. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41, 4080–4100 (1998).

    Article  CAS  PubMed  Google Scholar 

  65. GlaxoSmithKline Beecham PLC. Nitrogen-containing bicyclic heterocycles for use as antibacterials. WO patent 2003/87098 (2003).

  66. Gemma, S. et al. Optimization of 4-aminoquinoline/clotrimazole-based hybrid antimalarials: further structure–activity relationships, in vivo studies, and preliminary toxicity profiling. J. Med. Chem. 55, 6948–6967 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Beuchel, A. et al. Structure–activity relationship of anti-Mycobacterium abscessus piperidine-4-carboxamides, a new class of NBTI DNA gyrase inhibitors. ACS Med. Chem. Lett. 13, 417–427 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hoffmann La Roche. Process for piperidine intermediates for quinine, quinidine and analogs thereof. US patent 3931192 (1976).

  69. Igarashi, J., Katsukawa, M., Wang, Y. G., Acharya, H. P. & Kobayashi, Y. Stereocontrolled synthesis of quinine and quinidine. Tetrahedron Lett. 45, 3783–3786 (2004).

    Article  CAS  Google Scholar 

  70. Breman, A. C., Ruiz‐Olalla, A., van Maarseveen, J. H., Ingemann, S. & Hiemstra, H. Synthesis of quinuclidines by intramolecular silver‐catalysed amine additions to alkynes. Eur. J. Org. Chem. 2014, 7413–7425 (2014).

    Article  CAS  Google Scholar 

  71. Illa, O., Arshad, M., Ros, A., McGarrigle, E. M. & Aggarwal, V. K. Practical and highly selective sulfur ylide mediated asymmetric epoxidations and aziridinations using an inexpensive, readily available chiral sulfide. Applications to the synthesis of quinine and quinidine. J. Am. Chem. Soc. 132, 1828–1830 (2010).

    Article  CAS  PubMed  Google Scholar 

  72. Kapoor, V. K. & Karwayun, R. 4-Cyano-6-methoxyquinoline from quinine. Indian J. Pharm. Sci. 57, 237 (1995).

    CAS  Google Scholar 

  73. Elderfield, R. C. et al. Synthesis of certain simple 4-aminoquinoline derivatives. J. Am. Chem. Soc. 68, 1250–1251 (1946).

    Article  CAS  PubMed  Google Scholar 

  74. von Riesen, C., Jones, P. G. & Hoffmann, H. M. R. From quinidine to new enantiopure materials—tricyclic allylic N,O‐acetals and a stereospecific, onepot conversion of 1,2‐secondary, tertiary diols into spiroepoxides. Eur. J. Chem. 2, 673–679 (1996).

    Article  Google Scholar 

  75. von Riesen, C. & Hoffmann, H. M. R. A tricyclic dehydrorubanone and new isomers of the major quinidine metabolite. Eur. J. Chem. 2, 680–684 (1996).

    Article  Google Scholar 

  76. Friestad, G. K., Ji, A., Baltrusaitis, J., Korapala, C. S. & Qin, J. Scope of stereoselective Mn-mediated radical addition to chiral hydrazones and application in a formal synthesis of quinine. J. Org. Chem. 77, 3159–3180 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. SmithKline Beecham Corporation. Quinoline derivatives as antibacterials. US patent 2004053928A1 (2004).

  78. Clark, J. S., Townsend, R. J., Blake, A. J., Teat, S. J. & Johns, A. A concise enantioselective synthesis of the AB ring system of the manzamine alkaloids by ring-closing enyne metathesis. Tetrahedron Lett. 42, 3235–3238 (2001).

    Article  CAS  Google Scholar 

  79. Woo, S. & Shenvi, R. A. Natural product synthesis through the lens of informatics. Acc. Chem. Res. 54, 1157–1167 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wan Station Ltd; Tokyo Institute of Technology; Fukuoka University; Kinki University. Rotaxane compound and antitumor agent. EP patent 2348021 (2011).

  81. Peters, J. U. et al. Discovery of potent, balanced and orally active dual NK1/NK3 receptor ligands. Bioorg. Med. Chem. Lett. 20, 3405–3408 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Levi, N., Khenkin, A. M., Hailegnaw, B. & Neumann, R. Depolymerization of cellulose in water catalyzed by phenylboronic acid derivatives. ACS Sustain. Chem. Eng. 4, 5799–5803 (2016).

    Article  CAS  Google Scholar 

  83. Zhang, Z. et al. Conversion of carbohydrates into 5-hydroxymethylfurfural using polymer bound sulfonic acids as efficient and recyclable catalysts. RSC Adv. 3, 9201–9205 (2013).

    Article  CAS  Google Scholar 

  84. Li, C., Zhang, Z. & Zhao, Z. K. Direct conversion of glucose and cellulose to 5-hydroxymethylfurfural in ionic liquid under microwave irradiation. Tetrahedron Lett. 50, 5403–5405 (2009).

    Article  CAS  Google Scholar 

  85. Li, X., Ho, B., Lim, D. S. & Zhang, Y. Highly efficient formic acid-mediated oxidation of renewable furfural to maleic acid with H2O2. Green Chem. 19, 914–918 (2017).

    Article  CAS  Google Scholar 

  86. Tirsoaga, A., El Fergani, M., Parvulescu, V. I. & Coman, S. M. Upgrade of 5-hydroxymethylfurfural to dicarboxylic acids onto multifunctional-based Fe3O4@SiO2 magnetic catalysts. ACS Sustain. Chem. Eng. 6, 14292–14301 (2018).

    Article  CAS  Google Scholar 

  87. Kantam, L., Parsharamulu, T. & Manorama, S. V. Layered double hydroxides supported nano palladium: an efficient catalyst for the chemoselective hydrogenation of olefinic bonds. J. Mol. Catal. A 365, 115–119 (2012).

    Article  Google Scholar 

  88. McMaster, L. & Langreck, F. B. On the preparation of fumaric nitrile. The action of hydroxylamine on fumaric nitrile. J. Am. Chem. Soc. 40, 970–973 (1918).

    Article  CAS  Google Scholar 

  89. Blomquist, A. T. & Winslow, E. C. Unsaturated nitriles as dienophiles in the diene synthesis. J. Org. Chem. 10, 149–158 (1945).

    Article  CAS  Google Scholar 

  90. Chang, F., Kim, H., Lee, B., Park, S. & Park, J. Highly efficient solvent-free catalytic hydrogenation of solid alkenes and nitro-aromatics using Pd nanoparticles entrapped in aluminum oxy-hydroxide. Tetrahedron Lett. 51, 4250–4252 (2010).

    Article  CAS  Google Scholar 

  91. Khan, H. A. & Robins, D. J. Pyrrolizidine alkaloid biosynthesis. Synthesis of 13C-labelled putrescines and their incorporation into retronecine. J. Chem. Soc. Perkin Trans. 1, 101–105 (1985).

    Article  Google Scholar 

  92. Chatupheeraphat, A., Liao, H. H., Lee, S. C. & Rueping, M. Nickel-catalyzed C–CN bond formation via decarbonylative cyanation of esters, amides, and intramolecular recombination fragment coupling of acyl cyanides. Org. Lett. 19, 4255–4258 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Development of the Degradation module within the Allchemy platform (by K.M., S.S., M.M., R.R. and B.A.G.) has been supported by internal funds of Allchemy. Calculations, analysis of pathways, and laboratory experiments (by A.Ż.-D. and O.O.K.) were supported by the National Science Centre, Poland (award 2020/39/D/ST4/01890 to A.Ż.-D.). Analysis of results and writing of the paper by B.A.G. was supported by the Institute for Basic Science, Korea (project code IBS-R020-D1 to B.A.G.). We thank the Mcule team for providing access to their catalogue and standardizing the price information therein to per-gramme.

Author information

Authors and Affiliations

Authors

Contributions

K.M., S.S., M.M., R.R. and B.A.G. designed and developed the Allchemy platform. A.Ż.-D. performed the analyses and computational calculations described in the paper, most syntheses described in Fig. 4 (d-glucose–1234) and all the syntheses described in Fig. 5. O.O.K performed syntheses 35 described in Fig. 4. B.A.G. conceived and supervised the research and wrote the paper with help from A.Ż.-D.

Corresponding authors

Correspondence to Anna Żądło-Dobrowolska or Bartosz A. Grzybowski.

Ethics declarations

Competing interests

K.M., S.S., M.M. and B.A.G. are consultants and/or stakeholders of Allchemy. Allchemy software is the property of Allchemy. The other authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Calvin Chen, Fabrice Gallou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Sections 1–4 (basic information, analysis of results, experimental validation, supplementary references), Figs. 1–81 and Tables 1–7.

Supplementary Video 1

Illustration of the use of Allchemy’s degradation module.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Żądło-Dobrowolska, A., Molga, K., Kolodiazhna, O.O. et al. Computational synthesis design for controlled degradation and revalorization. Nat. Synth (2024). https://doi.org/10.1038/s44160-024-00497-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s44160-024-00497-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing