Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photo-induced synthesis of heteronuclear dual-atom catalysts

Abstract

Dual-atom catalysts (DACs) have garnered significant interest due to their high atom utilization and synergistic catalysis. However, there is no universal synthetic method to precisely synthesize DACs. Here we propose a ‘navigation and positioning’ strategy for precise and scalable synthesis of a series of heteronuclear M1M2 DACs on polymeric carbon nitride (PCN). The primary nucleation sites, M1-PCN, were created by calcining urea and M1 metal salts. Upon light irradiation, the accumulated photoelectrons at the M1 site can navigate and position the second metal ion, M2, close to the M1 site, enabling the precise synthesis of heteronuclear DACs. Density functional theory calculations demonstrate that the hybridization of the Zn s orbital (M1) and Ru d orbital (M2) benefits the formation of stable ZnRu DAC on PCN. The ZnRu DACs were then investigated for photocatalytic hydrogen evolution. It was shown that the Ru site reduced H+ to H* and the Zn site acted as the H* desorption site, thus synergistically boosting activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The strategy for precise synthesis of heteronuclear DACs.
Fig. 2: Structure characterization of ZnRu-PCN.
Fig. 3: Structure characterization of M1M2-PCN.
Fig. 4: EELS characterization for M1M2-PCN.
Fig. 5: XANES patterns of ZnRu-PCN.
Fig. 6: Theoretical calculations of adsorption energies and electron density distribution.
Fig. 7: Photocatalytic H2 evolution performance.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Wang, J. et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Bai, L., Hsu, C.-S., Alexander, D. T. L., Chen, H. M. & Hu, X. Double-atom catalysts as a molecular platform for heterogeneous oxygen evolution electrocatalysis. Nat. Energy 6, 1054–1066 (2021).

    Article  CAS  Google Scholar 

  3. Hao, Q. et al. Nickel dual-atom sites for electrochemical carbon dioxide reduction. Nat. Synth. 1, 719–728 (2022).

    Article  Google Scholar 

  4. Han, L. et al. Design of Ru–Ni diatomic sites for efficient alkaline hydrogen oxidation. Sci. Adv. 8, eabm3779 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yao, D. et al. Inter-metal interaction with a threshold effect in NiCu dual-atom catalysts for CO2 electroreduction. Adv. Mater. 35, e2209386 (2022).

    Article  Google Scholar 

  6. Zhang, L. et al. Atomically dispersed Ni–Cu catalysts for pH-universal CO2 electroreduction. Adv. Mater. 35, e2209590 (2023).

    Article  PubMed  Google Scholar 

  7. Zhang, X. et al. Identifying and tailoring C–N coupling site for efficient urea synthesis over diatomic Fe–Ni catalyst. Nat. Commun. 13, 5337 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shi, H. et al. Atomically dispersed indium-copper dual-metal active sites promoting C–C coupling for CO2 photoreduction to ethanol. Angew. Chem. Int. Ed. 61, e202208904 (2022).

    Article  CAS  Google Scholar 

  9. Feng, X. et al. Rational construction of an artificial binuclear copper monooxygenase in a metal-organic framework. J. Am. Chem. Soc. 143, 1107–1118 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, Q., Fang, W., Maron, L. & Zhu, C. Heterometallic clusters with uranium–metal bonds supported by double-layer nitrogen–phosphorus ligands. Acc. Chem. Res. 55, 1718–1730 (2022).

    Article  CAS  PubMed  Google Scholar 

  11. Ren, W. et al. Isolated diatomic Ni–Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019).

    Article  CAS  Google Scholar 

  12. Han, X. et al. Atomically dispersed binary Co–Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 31, e1905622 (2019).

    Article  PubMed  Google Scholar 

  13. Xiao, M. et al. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering. J. Am. Chem. Soc. 141, 17763–17770 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Yang, Y. et al. O-coordinated W–Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Sci. Adv. 6, eaba6586 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, X. et al. Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 71, 104597 (2020).

    Article  CAS  Google Scholar 

  16. Li, Y. et al. Synergistic effect of atomically dispersed Ni–Zn pair sites for enhanced CO2 electroreduction. Adv. Mater. 33, e2102212 (2021).

    Article  PubMed  Google Scholar 

  17. Lu, Z. et al. An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019).

    Article  CAS  Google Scholar 

  18. Ye, W. et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem. 5, 2865–2878 (2019).

    Article  CAS  Google Scholar 

  19. Liu, M. et al. A “pre-constrained metal twins” strategy to prepare efficient dual-metal-atom catalysts for cooperative oxygen electrocatalysis. Adv. Mater. 34, e2107421 (2022).

    Article  PubMed  Google Scholar 

  20. Liang, Z., Song, L., Sun, M., Huang, B. & Du, Y. Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn–Ln dual atomic catalysts. Sci. Adv. 7, eabl4915 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cheng, L. et al. Dual single-atom tailoring with bifunctional integration for high-performance CO2 photoreduction. Adv. Mater. 33, e2105135 (2021).

    Article  PubMed  Google Scholar 

  22. Zhu, J. et al. Quasi-covalently coupled Ni–Cu atomic pair for synergistic electroreduction of CO2. J. Am. Chem. Soc. 144, 9661–9671 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Wang, J. et al. Highly durable and fully dispersed cobalt diatomic site catalysts for CO2 photoreduction to CH4. Angew. Chem. Int. Ed. 61, e202113044 (2022).

    Article  CAS  Google Scholar 

  24. Wei, Y. S. et al. Fabricating dual-atom iron catalysts for efficient oxygen evolution reaction: a heteroatom modulator approach. Angew. Chem. Int. Ed. 59, 16013–16022 (2020).

    Article  CAS  Google Scholar 

  25. Han, L. et al. Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis. Angew. Chem. Int. Ed. 60, 345–350 (2021).

    Article  CAS  Google Scholar 

  26. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Zhao, J. et al. A heterogeneous iridium single-atom-site catalyst for highly regioselective carbenoid O–H bond insertion. Nat. Catal. 4, 523–531 (2021).

    Article  CAS  Google Scholar 

  28. Xia, C. et al. General synthesis of single-atom catalysts with high metal loading using graphene quantum dots. Nat. Chem. 13, 887–894 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Han, L. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, F. et al. A general approach to 3D-printed single-atom catalysts. Nat. Synth. 2, 129–139 (2023).

  31. Tian, S. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Yan, H. et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat. Commun. 8, 1070 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang, L. et al. Atomic layer deposited Pt–Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat. Commun. 10, 4936 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jiang, W. et al. Photocatalyst for high-performance H2 production: Ga-doped polymeric carbon nitride. Angew. Chem. Int. Ed. 60, 6124–6129 (2021).

    Article  CAS  Google Scholar 

  36. Zhang, C. et al. Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium. ACS Nano 11, 6930–6941 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Geng, Z. et al. Achieving a record-high yield rate of 120.9 μgNH3 mgcat.−1 h−1 for N2 electrochemical reduction over Ru single-atom catalysts. Adv. Mater. 30, 1803498 (2018).

    Article  Google Scholar 

  38. Bai, L. et al. Highly dispersed ruthenium-based multifunctional electrocatalyst. ACS Catal. 9, 9897–9904 (2019).

    Article  CAS  Google Scholar 

  39. Han, L. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020).

    Article  CAS  PubMed  Google Scholar 

  40. Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Yasukawa, T., Ninomiya, W., Ooyachi, K., Aoki, N. & Mae, K. Efficient oxidative dehydrogenation of lactate to pyruvate using a gas–liquid micro flow system. Ind. Eng. Chem. Res. 50, 3858–3863 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFA1502902 to T.-B.L., 2022YFA1502902 to J.Z.), National Natural Science Foundation of China (21931007 to T.-B.L., 92161103 and 22071180 to Z.-M.Z.) and the Natural Science Foundation of Tianjin City of China (18JCJQJC47700 to Z.-M.Z.). We gratefully acknowledge BL14W1 beamline of Shanghai Synchrotron Radiation Facility, Shanghai, China, for providing the beam time, and the Electron Microscopy Center of the University of Chinese Academy Science for conducting the EELS measurements.

Author information

Authors and Affiliations

Authors

Contributions

Z.-M.Z. and T.-B.L. conceived and designed this project. Q.-P.Z., Z.-Y.T., P.Z. and Y.W. performed the experiments. W.-X.S. carried out the density functional theory calculation. J.Z. carried out and analysed the X-ray absorption fine structure spectroscopy. Q.-P.Z., Z.-M.Z. and T.-B.L. analysed the data. Q.-P.Z., W.-X.S., Z.-M.Z., S.-Z.Q. and T.-B.L. wrote and revised the article.

Corresponding authors

Correspondence to Zhi-Ming Zhang or Tong-Bu Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Mihaela Florea, Yujing Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–61 and Tables 1–8.

Supplementary Data 1

Statistical source data for Supplementary Information.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, QP., Shi, WX., Zhang, J. et al. Photo-induced synthesis of heteronuclear dual-atom catalysts. Nat. Synth 3, 497–506 (2024). https://doi.org/10.1038/s44160-024-00486-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-024-00486-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing