Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of alkenyl boronates through stereoselective vinylene homologation of organoboronates

Abstract

Matteson homologation of organoboronates is an attractive approach for constructing aliphatic carbon chains via iterative insertion of carbenoids. However, the corresponding homologation that can introduce alkene moieties to molecular backbones remains elusive. Here we report the development of a stereoselective vinylene homologation reaction of various alkyl and aryl boronates. The reaction proceeds through diastereoselective consecutive insertion of a silyl- and an alkoxy-substituted carbenoid, followed by a Peterson-type elimination. A diverse range of alkenyl boronates can be formed in good yield and with good to excellent trans selectivity. Density functional theory calculations reveal the origin of diastereoselectivity in carbenoid insertion and how Lewis acids with different sulfide binding affinities affect the competing SN2- and SN1-type 1,2-boronate migration pathways with distinct levels of stereospecificity. This protocol has been applied to the programmable synthesis of piperamide-family natural products through iterative vinylene and methylene homologations. Guided by mechanistic understanding, the use of oxyphilic Lewis acids has enabled the development of a cis-selective vinylene homologation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vinylene homologation and strategy design.
Fig. 2: Mechanistic studies.
Fig. 3: Synthetic applications.
Fig. 4: Z-Vinylene homologation of aryl boronates.

Similar content being viewed by others

Data availability

All the data generated or analysed during this study are included in this Article and its Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number 2260049 (8). These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Li, J. J. Name Reactions for Homologations, Part 1 (John Wiley, 2009).

  2. Candeias, N. R., Paterna, R. & Gois, P. M. P. Homologation reaction of ketones with diazo compounds. Chem. Rev. 116, 2937–2981 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Castoldi, L., Monticelli, S., Senatore, R., Ielo, L. & Pace, V. Homologation chemistry with nucleophilic α-substituted organometallic reagents: chemocontrol, new concepts and (solved) challenges. Chem. Commun. 54, 6692–6704 (2018).

    Article  CAS  Google Scholar 

  4. Sebastian, S., Monika, Khatana, A. K., Yadav, E. & Gupta, M. K. Recent approaches towards one-carbon homologation–functionalization of aldehydes. Org. Biomol. Chem. 19, 3055–3074 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Monticelli, S., Rui, M., Castoldi, L., Missere, G. & Pace, V. A practical guide for using lithium halocarbenoids in homologation reactions. Monatsh. Chem. 149, 1285–1291 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matteson, D. S. α-Halo boronic esters: intermediates for stereodirected synthesis. Chem. Rev. 89, 1535–1551 (1989).

    Article  CAS  Google Scholar 

  7. Pace, V. Homologation Reactions: Reagents, Applications, and Mechanisms (Wiley‐VCH, 2023).

  8. Thomas, S. P., French, R. M., Jheengut, V. & Aggarwal, V. K. Homologation and alkylation of boronic esters and boranes by 1,2‐metallate rearrangement of boron ate complexes. Chem. Rec. 9, 24–39 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. The Matteson reaction. Org. React. 105, 427–860 (2021).

    Google Scholar 

  10. Blakemore, P. R. & Burge, M. S. Iterative stereospecific reagent-controlled homologation of pinacol boronates by enantioenriched α-chloroalkyllithium reagents. J. Am. Chem. Soc. 129, 3068–3069 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Emerson, C. R., Zakharov, L. N. & Blakemore, P. R. Iterative stereospecific reagent-controlled homologation using a functionalized α-chloroalkyllithium: synthesis of cyclic targets related to epibatidine. Org. Lett. 13, 1318–1321 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Sun, X. & Blakemore, P. R. Programmed synthesis of a contiguous stereotriad motif by triple stereospecific reagent-controlled homologation. Org. Lett. 15, 4500–4503 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Blair, D. J. et al. Automated iterative Csp3–C bond formation. Nature 604, 92–97 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Xie, Q. & Dong, G. Aza-Matteson reactions via controlled mono- and double-methylene insertions into nitrogen–boron bonds. J. Am. Chem. Soc. 143, 14422–14427 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Xie, Q. & Dong, G. Programmable ether synthesis enabled by oxa-Matteson reaction. J. Am. Chem. Soc. 144, 8498–8503 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Carreras, J., Caballero, A. & Pérez, P. J. Alkenyl boronates: synthesis and applications. Chem. Asian J. 14, 329–343 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Coombs, J. R., Zhang, L. & Morken, J. P. Synthesis of vinyl boronates from aldehydes by a practical boron-Wittig reaction. Org. Lett. 17, 1708–1711 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, Z. et al. Selective and efficient synthesis of trans-arylvinylboronates and trans-hetarylvinylboronates using palladium catalyzed cross-coupling. New J. Chem. 41, 3172–3176 (2017).

    Article  CAS  Google Scholar 

  19. Cuenca, A. B. & Fernández, E. Boron-Wittig olefination with gem-bis(boryl)alkanes. Chem. Soc. Rev. 50, 72–86 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Hemelaere, R., Carreaux, F. & Carboni, B. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol. J. Org. Chem. 78, 6786–6792 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Hemelaere, R., Caijo, F., Mauduit, M., Carreaux, F. & Carboni, B. Ruthenium-catalyzed one-pot synthesis of (E)-(2-arylvinyl)boronates through an isomerization/cross-metathesis sequence from allyl-substituted aromatics. Eur. J. Org. Chem. 2014, 3328–3333 (2014).

  22. Mkhalid, I. A. I. et al. Rhodium catalysed dehydrogenative borylation of alkenes: vinylboronates via C–H activation. Dalton Trans. 22, 1055–1064 (2008).

    Article  Google Scholar 

  23. Coapes, R. B., Souza, F. E. S., Thomas, R. L., Hall, J. J. & Marder, T. B. Rhodium catalysed dehydrogenative borylation of vinylarenes and 1,1-disubstituted alkenes without sacrificial hydrogenation—a route to 1,1-disubstituted vinylboronates. Chem. Commun. 614–615 (2003).

  24. Geier, S. J., Vogels, C. M., Melanson, J. A. & Westcott, S. A. The transition metal-catalysed hydroboration reaction. Chem. Soc. Rev. 51, 8877–8922 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Brown, J. M. & Lloyd-Jones, G. C. Vinylborane formation in rhodium-catalysed hydroborations; ligand-free homogeneous catalysis. Chem. Commun. 710–712 (1992).

  26. Brown, J. M. & Lloyd-Jones, G. C. Vinylborane formation in rhodium-catalyzed hydroboration of vinylarenes. Mechanism versus borane structure and relationship to silation. J. Am. Chem. Soc. 116, 866–878 (1992).

    Article  Google Scholar 

  27. Uno, B. E., Gillis, E. P. & Burke, M. D. Vinyl MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesis. Tetrahedron 16, 3130–3138 (2009).

    Article  Google Scholar 

  28. Woerly, E. M., Struble, J. R., Palyam, N., O’Hara, S. P. & Burke, M. D. (Z)-(2-Bromovinyl)-MIDA boronate: a readily accessible and highly versatile building block for small molecule synthesis. Tetrahedron 67, 4333–4343 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zweifel, G., Arzoumanian, H. & Whitney, C. C. A convenient stereoselective synthesis of substituted alkenes via hydroboration–iodination of alkynes. J. Am. Chem. Soc. 89, 3652–3653 (1967).

    Article  CAS  Google Scholar 

  30. Armstrong, R. J. & Aggarwal, V. K. 50 years of Zweifel olefination: a transition-metal-free coupling. Synthesis 49, 3323–3336 (2017).

    Article  CAS  PubMed Central  Google Scholar 

  31. Fordham, J. M., Grayson, M. N. & Aggarwal, V. K. Vinylidene homologation of boronic esters and its application to the synthesis of the proposed structure of machillene. Angew. Chem. Int. Ed. 58, 15268–15272 (2019).

    Article  CAS  Google Scholar 

  32. Aparece, M. D., Gao, C., Lovinger, G. J. & Morken, J. P. Vinylidenation of organoboronic esters enabled by a Pd-catalyzed metallate shift. Angew. Chem. Int. Ed. 58, 592–595 (2019).

    Article  CAS  Google Scholar 

  33. Senatore, R., Malik, M., Langer, T., Holzer, W. & Pace, V. Consecutive and selective double methylene insertion of lithium carbenoids to isothiocyanates: a direct assembly of four‐membered sulfur‐containing cycles. Angew. Chem. Int. Ed. 60, 24854–24858 (2021).

    Article  CAS  Google Scholar 

  34. Staden, L. F. V., Gravestock, D. & Ager, D. J. New developments in the Peterson olefination reaction. Chem. Soc. Rev. 31, 195–200 (2002).

    Article  PubMed  Google Scholar 

  35. Hudrlik, P. F. & Peterson, D. Stereospecific olefin-forming elimination reactions of β-hydroxyalkylsilanes. J. Am. Chem. Soc. 97, 6285–6289 (1975).

    Article  Google Scholar 

  36. Matteson, D. S. & Majumdar, D. Homologation of boronic esters with trimethylsilylchloromethyl-lithium. J. Organomet. Chem. 2, C41–C43 (1980).

    Article  Google Scholar 

  37. Matteson, D. S. & Majumdar, D. α-Trimethylsilyl boronic esters. Pinacol lithio(trimethylsilyl) methaneboronate, homologation of boronic esters with [chloro(trimethylsilyl)methyl]lithium, and comparisons with some phosphorus and sulfur analogues. Organometallics 2, 230–236 (1983).

    Article  CAS  Google Scholar 

  38. Brown, H. C. & Imai, T. Homologation of alkylboronic esters with methoxy(phenylthio)methyl-lithium: regio- and stereocontrolled aldehyde synthesis from olefins via hydroboration. J. Am. Chem. Soc. 105, 6285–6289 (1983).

    Article  CAS  Google Scholar 

  39. Brown, H. C., Imai, T., Desai, M. C. & Singaraml, B. Chiral synthesis via organoboranes. 3. Conversion of boronic esters of essentially 100% optical purity to aldehydes, acids, and homologated alcohols of very high enantiomeric purities. J. Am. Chem. Soc. 107, 4980–4983 (1985).

    Article  CAS  Google Scholar 

  40. Noble, A., Roesner, S. & Aggarwal, V. K. Short enantioselective total synthesis of tatanan A and 3‐epi‐tatanan A using assembly‐line synthesis. Angew. Chem. Int. Ed. 55, 15920–15924 (2016).

    Article  CAS  Google Scholar 

  41. Carmes, L., Carreaux, F. & Carboni, B. Homologation of boronic esters with (dialkoxymethyl)lithiums. asymmetric synthesis of α-alkoxy boronic esters. J. Org. Chem. 65, 5403–5408 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Mlynarski, S. N., Karns, A. S. & Morken, J. P. Direct stereospecific amination of alkyl and aryl pinacol boronates. J. Am. Chem. Soc. 134, 16449–16451 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Edelstein, E. K., Grote, A. C., Palkowitz, M. D. & Morken, J. P. A protocol for direct stereospecific amination of primary, secondary, and tertiary alkylboronic esters. Synlett 29, 1749–1752 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rondan, N. G. & Houk, K. N. Staggered models for asymmetric induction: attack trajectories and conformations of allylic bonds from ab initio transition structures of addition reactions. J. Am. Chem. Soc. 104, 7162–7166 (1982).

    Article  Google Scholar 

  45. Lodge, E. P. & Heathcock, C. H. Acyclic Stereoselection. 40. Steric effects, as well as σ*-orbital energies, are important in diastereoface differentiation in additions to chiral aldehydes. J. Am. Chem. Soc. 109, 3353–3361 (1987).

    Article  CAS  Google Scholar 

  46. Cieplak, A. S. Stereochemistry of nucleophilic addition to cyclohexanone. The importance of two-electron stabilizing interactions. J. Am. Chem. Soc. 103, 4540 (1981).

    Article  CAS  Google Scholar 

  47. Tai, H. C. & Lim, C. Computational studies of the coordination stereochemistry, bonding, and metal selectivity of mercury. J. Phys. Chem. A 110, 452–462 (2005).

    Article  Google Scholar 

  48. Jeon, H. J., Kim, K., Kim, Y. D. & Lee, S. F. Naturally occurring piper plant amides in agriculture and pharmacutical industries: perspectives of piperine and piperlongumine. Appl. Biol. Chem. 62, 1–7 (2019).

    Article  Google Scholar 

  49. Schwarz, I. & Braun, M. Synthesis of naturally occurring dienamides by palladium-catalyzed carbonyl alkenylation. J. Prakt. Chem. 341, 72–74 (1999).

    Article  CAS  Google Scholar 

  50. De Araújo-Júnior, J. X. et al. Synthesis of natural amide alkaloid piperdardine and a new bioactive analogue. Synth. Commun. 31, 117–123 (2001).

    Article  Google Scholar 

  51. Elliott, M., Farnham, A. W., Janes, N. F., Johnson, D. M. & Pulman, D. A. Synthesis and insecticidal activity of lipophilic amides. Part 6: 6-(disubstituted-phenyl)hexa-2,4-dienamides. Pestic. Sci. 18, 239–244 (1987).

    Article  CAS  Google Scholar 

  52. Banerji, A., Bandyopadhyay, D. & Siddhanta, A. K. Synthesis of retrofractamide A. Phytochemistry 26, 3345–3346 (1987).

    Article  CAS  Google Scholar 

  53. Ma, D. & Lu, X. A new methodology to key intermediates for synthesizing polyene compounds. Tetrahedron 46, 6319–6330 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The University of Chicago Women’s Board (G.D.), ACS Petroleum Research Fund (65249-ND1 to G.D.) and National Institute of General Medical Sciences (R35GM128779 to P.L.) are acknowledged for research support. We thank Q. Xie (University of Chicago) for checking the experimental procedure and S. Ochi (University of Chicago) for X-ray analysis. Computational studies were performed at the Center for Research Computing at the University of Pittsburgh and the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS) programme, supported by National Science Foundation award numbers OAC-2117681 and OAC-2138259.

Author information

Authors and Affiliations

Authors

Contributions

G.D. and M.C. conceived and designed the experiments. M.C. performed the experiments and analysed the data. P.L. and T.H.T. conceived and designed the computational studies. T.H.T. performed the computational studies. M.C., T.H.T., P.L. and G.D. prepared the paper together.

Corresponding authors

Correspondence to Peng Liu or Guangbin Dong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Elena Fernández, Vittorio Pace, Aurélien de la Torre and the other, anonymous, reviewer for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Tables 1–7, experimental procedures and NMR spectra.

Supplementary Data 1

Crystallographic data for compound 8; CCDC reference 2260049.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Tugwell, T.H., Liu, P. et al. Synthesis of alkenyl boronates through stereoselective vinylene homologation of organoboronates. Nat. Synth 3, 337–346 (2024). https://doi.org/10.1038/s44160-023-00461-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00461-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing