Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of branched silica nanotrees using a nanodroplet sequential fusion strategy

Abstract

Wedderburn–Etherington number patterns, which have inherent combinatorial rules, are ubiquitous in natural tree-like systems and are of significance for studying the assembly of single particles into branched superstructures. However, implementing these patterns at the micro- or nanoscale is still challenging. By controlling the sequential fusion of nanodroplets, these patterns can be reproduced in nanometre-sized branched mesoporous silica structures. Anisotropic mesoporous silica nanoparticles, possessing exposed reaction-active droplet surfaces, are initially synthesized and then assembled following Wedderburn–Etherington number patterns (1, 1, 1, 2, 3, 6, 11, and so on), forming branched nanotrees containing dimers to multimers. This assembly is achieved by using ligand-grafted palladium nanocrystals as an adhesive, which can fuse the droplets exposed on one side of the preformed nanoparticles. The formed dimers have a Y-shaped architecture with two fused branches (length, 395 nm; outer diameter, 157 nm) connected by an open tube that grows later, and the sequential fusion-growth style can further extend the Y-structure to multibranched structures. Statistics can predict the degree of branching at each assembly level. The types and configurations of branched structural isomers can also be calculated precisely and are specified by the Wedderburn–Etherington trees.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Formation of branched, Y-shaped mesoporous silica dimers.
Fig. 2: Sequential assembly.
Fig. 3: Wedderburn–Etherington trees.
Fig. 4: Illustration of the nanodroplet fusion strategy.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the article and the associated Supplementary Information Section. Source data are provided with this paper.

References

  1. Enquist, B. J. & Niklas, K. J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 295, 1517–1520 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  2. Klar, A. Plant mathematics: Fibonacci’s flowers. Nature 417, 595 (2002).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Eloy, C. et al. Wind loads and competition for light sculpt trees into self-similar structures. Nat. Commun. 8, 1014 (2017).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  4. Hu, Y. & Kane, C. L. Fibonacci topological superconductor. Phys. Rev. Lett. 120, 066801 (2018).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Li, C., Zhang, X. & Cao, Z. Triangular and Fibonacci number patterns driven by stress on core/shell microstructures. Science 309, 909–911 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  6. West, G., Brown, J. & Enquist, B. A. A general model for the structure and allometry of plant vascular systems. Nature 400, 664–667 (1999).

    Article  CAS  ADS  Google Scholar 

  7. McCulloh, K., Sperry, J. & Adler, F. Water transport in plants obeys Murray’s law. Nature 421, 939–942 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Yu, B. & Li, B. Fractal-like tree networks reducing the thermal conductivity. Phys. Rev. E 73, 066302 (2006).

    Article  ADS  Google Scholar 

  9. Ryoo, R. et al. Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585, 221–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Gröschel, A. et al. Guided hierarchical co-assembly of soft patchy nanoparticles. Nature 503, 247–251 (2013).

    Article  PubMed  ADS  Google Scholar 

  11. Li, F. et al. Site-specific functionalization of anisotropic nanoparticles: from colloidal atoms to colloidal molecules. J. Am. Chem. Soc. 131, 18548–18555 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Verstraete, L. & De Feyter, S. 2D Self-assembled molecular networks and on-surface reactivity under nanoscale lateral confinement. Chem. Soc. Rev. 50, 5884–5897 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedral. Nature 505, 73–77 (2014).

    Article  PubMed  ADS  Google Scholar 

  14. Mann, S. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions. Nat. Mater. 8, 781–792 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  15. Liu, K. et al. Step-growth polymerization of inorganic nanoparticles. Science 329, 197–200 (2010).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Ma, Y. et al. Streamlined mesoporous silica nanoparticles with tunable curvature from interfacial dynamic-migration strategy for nanomotors. Nano Lett. 21, 6071–6079 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Shevchenko, E. V. et al. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Tang, Z. et al. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 314, 274–278 (2006).

    Article  CAS  PubMed  ADS  Google Scholar 

  19. Maye, M. M. et al. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat. Mater. 8, 388–391 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Nie, Z., Petukhova, A. & Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  21. Ma, Y. et al. Remodeling nanodroplets into hierarchical mesoporous silica nanoreactors with multiple chambers. Nat. Commun. 13, 6136 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Segawa, Y. et al. Synthesis of a Möbius carbon nanobelt. Nat. Synth. 1, 535–541 (2022).

    Article  ADS  Google Scholar 

  23. Woods, J. F. et al. Shape-assisted self-assembly. Nat. Commun. 13, 3681 (2022).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Singh, G. et al. Self-assembly of magnetite nanocubes into helical superstructures. Science 345, 1149–1153 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Erb, R. M. et al. Magnetic assembly of colloidal superstructures with multipole symmetry. Nature 457, 999–10002 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Suteewong, T. et al. Multicompartment mesoporous silica nanoparticles with branched shapes: an epitaxial growth mechanism. Science 3, 337–341 (2013).

    Article  ADS  Google Scholar 

  28. Wang, T. et al. Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Jun, K. & Jacobson, J. M. Programmable growth of branched silicon nanowires using a focused ion beam. Nano Lett. 10, 2777–2782 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Bandaru, P. et al. Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat. Mater. 4, 663–666 (2005).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Cui, Y., Zhu, H., Cai, J. & Qiu, H. Self-regulated co-assembly of soft and hard nanoparticles. Nat. Commun. 12, 5682 (2021).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Nie, Z. et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nat. Mater. 6, 609–614 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. McMullen, A. et al. Self-assembly of emulsion droplets through programmable folding. Nature 610, 502–506 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. Miszta, K. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 10, 872–876 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  35. Manna, L. et al. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2, 382–385 (2003).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Zhao, T. et al. Surface-kinetics mediated mesoporous multipods for enhanced bacterial adhesion and inhibition. Nat. Commun. 10, 4387 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  37. Wang, J. et al. Physical activation of innate immunity by spiky particles. Nat. Nanotechnol. 13, 1078–1086 (2018).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Bóna, M. & Flajolet, P. Isomorphism and symmetries in random phylogenetic trees. J. Appl. Probab. 46, 1005–1019 (2009).

    Article  MathSciNet  Google Scholar 

  39. Cyvin, S. J., Brunvoll, J. & Cyvin, B. N. Enumeration of constitutional isomers of polyenes. J. Mol. Struct. Theochem. 357, 255–261 (1995).

    Article  CAS  Google Scholar 

  40. Cyvin, S. J. et al. Enumeration of polyene hydrocarbons: a complete mathematical solution. J. Chem. Inf. Comput. Sci. 35, 743–751 (1995).

    Article  CAS  Google Scholar 

  41. Wang, Y. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  42. Chen, G. et al. Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 18, 169–174 (2019).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. Lekkerkerker, H. N. & Tuinier, R. Colloids and the Depletion Interaction, 1st edn, Vol. XIV, 234 (Springer, 2011). .

  44. Han, F. et al. On demand synthesis of hollow fullerene nanostructures. Nat. Commun. 10, 1548 (2019).

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  45. Han, F. et al. Precise dimerization of hollow fullerene compartments. J. Am. Chem. Soc. 142, 15396–15402 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Aubert, T. et al. Two-dimensional superstructures of silica cages. Adv. Mater. 32, 1908362 (2020).

    Article  CAS  Google Scholar 

  47. Kim, S. et al. Synthesis of monodisperse palladium nanoparticles. Nano Lett. 3, 1289–1291 (2003).

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFA0209402 (D.Z.)), the National Natural Science Foundation of China (22088101 (D.Z.), 21875043 (X.L.), 22075049 (X.L.), 21733003 (D.Z.), 51961145403 (D.Z.), 21833008 (Z.L.)), the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality (22JC1410200 (D.Z.)), the Shanghai Rising-Star Program (20QA1401200 (X.L.)), the Shanghai Pilot Program for Basic Research-Fudan University (22TQ004 (X.L.)) and the Natural Science Foundation of Shanghai (22ZR1404600, 18ZR1404600, 20490710600 (X.L.)). This publication was made possible by NPRP grant number NPRP 12S-0309-190268 (X.L.) from the Qatar National Research Fund (a member of the Qatar Foundation), the ‘Junma’ Program of Inner Mongolia University (23600-5233709 (Y.M.)) and the Inner Mongolia Natural Science Foundation Youth Fund (2023QN02013 (Y.M.)). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Contributions

D.Z., X.L. and Y.M. contributed to the study conception and writing of the paper. Y.M. performed all material syntheses, characterizations, data collection and analysis. Y.A., B.M., K.L., C.W., W.Z., J.J. and J.Z. assisted Y.M. with the synthesis of materials and the data collection and analysis. Z.L, Y.-L.Z. and R.L. performed the simulation of the fusion process and distribution of products, and A.D. and L.D. were involved in partial analysis of the fusion mechanism. All authors read and commented on the paper.

Corresponding authors

Correspondence to Zhongyuan Lu, Xiaomin Li or Dongyuan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Hongyu Chen and Ming-Yong Han for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Table of contents, Supplementary methods, Figs. 1–34, Table 1 and refs.1–9.

Supplementary Video 1

Movie 1 Dynamic fusion angle.

Supplementary Video 2

Movie 2 Dynamic fusion process.

Supplementary Video 3

Movie 3 Pairwise fusion.

Supplementary Data Fig. 2a

Droplet size distribution at different times.

Supplementary Data Figure 5d

Variation of estimated exposed surface areas at different times.

Supplementary Data Figure 9

SAXS pattern, N2 sorption isotherms, pore-size distribution, and (d) X-ray diffraction pattern of the samples.

Supplementary Data Figure 11a, b

Fourier-transform infrared spectra of palladium nanocrystals and zeta potential changes of CTAB solution at different times.

Supplementary Data Figure 13e-g

Variation of product yield with different palladium concentrations.

Supplementary Data Figure 23c

Calculated main products at each level.

Supplementary Data Figure 33

Curvature hot spot distribution at different times.

Source data

Source Data Fig. 1

Statistical source data Fig. 1e.

Source Data Fig. 2

Statistical source data Fig. 2b,d,f,h,j.

Source Data Fig. 4

Statistical source data Fig. 4c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Zhu, YL., Lin, R. et al. Synthesis of branched silica nanotrees using a nanodroplet sequential fusion strategy. Nat. Synth 3, 236–244 (2024). https://doi.org/10.1038/s44160-023-00434-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00434-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing