Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct electroconversion of air to nitric acid under mild conditions

Abstract

Nitric acid (HNO3) synthesis is an important industrial process but typically requires multiple energy-intensive steps, including the synthesis and subsequent oxidation of ammonia. Here we report the direct conversion of air to HNO3 under ambient conditions through a hydroxyl radical (OH­·)-mediated hetero-homogeneous electrochemical route. The conversion proceeds at a reductive potential of 0 V versus the reversible hydrogen electrode at the cathode and can achieve a Faradaic efficiency of 25.37% with over 99% HNO3 selectivity. Experimental and theoretical investigations reveal that OH· produced from Fe2+-induced dissociation of in situ generated H2O2 can efficiently activate N2. This delivers a high HNO3 productivity of \(141.83\,\upmu{\mathrm{mol}}\,{\mathrm{h}}^{-1}\,{\mathrm{g}}_{\mathrm{Fe}}^{-1}\), which is 225 times that of directly using H2O2 as the oxidant. This process opens an energy-efficient and green route for the direct conversion of air to HNO3 under mild conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of the reaction conditions of different routes for the conversion of N2 to HNO3.
Fig. 2: Catalytic performance testing for the electroconversion of air to HNO3.
Fig. 3: Investigation of the reaction intermediates in the electroconversion of air to HNO3.
Fig. 4: Reaction mechanism from DFT calculations.

Similar content being viewed by others

Data availability

The data supporting the finding of the study are available in the paper and its Supplementary Information. Source data are provided with this paper and in the Figshare repository (https://doi.org/10.6084/m9.figshare.23652639).

References

  1. Bartholomew, C. H. & Farrauto, R. J. Fundamentals of Industrial Catalytic Processes 2nd edn, 572–575 (John Wiley & Sons, 2006).

  2. Service, R. F. Liquid sunshine. Science 361, 120–123 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Chen, J. G. et al. Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    Article  CAS  Google Scholar 

  5. Chen, S. et al. Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst. Angew. Chem. Int. Ed. 56, 2699–2703 (2017).

    Article  CAS  Google Scholar 

  6. Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  8. Suryanto, B. H. R. et al. Nitrogen reduction to ammonia at high efficiency and rates based on a phosphonium proton shuttle. Science 372, 1187–1191 (2021).

    Article  CAS  PubMed  Google Scholar 

  9. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Wang, Y., Yu, Y., Jia, R., Zhang, C. & Zhang, B. Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. Natl Sci. Rev. 6, 730–738 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Medford, A. J. & Hatzell, M. C. Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal. 7, 2624–2643 (2017).

    Article  CAS  Google Scholar 

  12. Bruno, T. J., Haynes, W. M. & Lide, D. R. CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 84th edn, 843–850 (CRC Press, 2003).

  13. Kuang, M. et al. Efficient nitrate synthesis via ambient nitrogen oxidation with Ru-doped TiO2/RuO2 electrocatalysts. Adv. Mater. 32, 2002189 (2020).

    Article  CAS  Google Scholar 

  14. Nie, Z. et al. Catalytic kinetics regulation for enhanced electrochemical nitrogen oxidation by Ru nanoclusters-coupled Mn3O4 catalysts decorated with atomically dispersed Ru atoms. Adv. Mater. 34, 2108180 (2022).

    Article  CAS  Google Scholar 

  15. Li, T. et al. Ru-doped Pd nanoparticles for nitrogen electrooxidation to nitrate. ACS Catal. 11, 14032–14037 (2021).

    Article  CAS  Google Scholar 

  16. Dai, C., Sun, Y., Chen, G., Fisher, A. C. & Xu, Z. Electrochemical oxidation of nitrogen towards direct nitrate production on spinel oxides. Angew. Chem. Int. Ed. 59, 9418–9422 (2020).

    Article  CAS  Google Scholar 

  17. Han, S., Wang, C., Wang, Y., Yu, Y. & Zhang, B. Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets. Angew. Chem. Int. Ed. 60, 4474–4478 (2021).

    Article  CAS  Google Scholar 

  18. Guo, Y. et al. Electrochemical nitrate production via nitrogen oxidation with atomically dispersed Fe on N-doped carbon nanosheets. ACS Nano 16, 655–663 (2021).

    Article  PubMed  Google Scholar 

  19. Zhang, L. et al. A Janus Fe–SnO2 catalyst that enables bifunctional electrochemical nitrogen fixation. Angew. Chem. Int. Ed. 59, 10888–10893 (2020).

    Article  CAS  Google Scholar 

  20. Fang, W. et al. Boosting efficient ambient nitrogen oxidation by a well-dispersed Pd on MXene electrocatalyst. Chem. Commun. 56, 5779–5782 (2020).

    Article  CAS  Google Scholar 

  21. Zhang, Y. et al. Electrocatalytic fixation of N2 into NO3: electron transfer between oxygen vacancies and loaded Au in Nb2O5-x nanobelts to promote ambient nitrogen oxidation. J. Mater. Chem. A 9, 17442–17450 (2021).

    Article  CAS  Google Scholar 

  22. Umar, M., Aziz, H. A. & Yusoff, M. S. Trends in the use of Fenton, electro-Fenton and photo-Fenton for the treatment of landfill leachate. Waste Manage. (Oxford) 30, 2113–2121 (2010).

    Article  CAS  Google Scholar 

  23. Ganiyu, S. O., Zhou, M. & Martínez-Huitle, C. A. Heterogeneous electro-Fenton and photoelectro-Fenton processes: a critical review of fundamental principles and application for water/wastewater treatment. Appl. Catal. B 235, 103–129 (2018).

    Article  CAS  Google Scholar 

  24. Haber, F. & Weiss, J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. Lond. A 147, 332–351 (1934).

    Article  CAS  Google Scholar 

  25. Fenton, H. J. H. LXXIII—Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Dalton Trans. 65, 899–910 (1894).

    Article  CAS  Google Scholar 

  26. Glaze, W. H., Lay, Y. & Kang, J.-W. Advanced oxidation processes. A kinetic model for the oxidation of 1,2-dibromo-3-chloropropane in water by the combination of hydrogen peroxide and UV radiation. Ind. Eng. Chem. Res. 34, 2314–2323 (1995).

    Article  CAS  Google Scholar 

  27. Andreozzi, R., Caprio, V., Insola, A. & Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today 53, 51–59 (1999).

    Article  CAS  Google Scholar 

  28. Zhao, K. et al. Enhanced H2O2 production by selective electrochemical reduction of O2 on fluorine-doped hierarchically porous carbon. J. Catal. 357, 118–126 (2018).

    Article  Google Scholar 

  29. Li, L. et al. Tailoring selectivity of electrochemical hydrogen peroxide generation by tunable pyrrolic‐nitrogen–carbon. Adv. Energy Mater. 10, 2000789 (2020).

    Article  CAS  Google Scholar 

  30. Khataee, A., Safarpour, M., Zarei, M. & Aber, S. Electrochemical generation of H2O2 using immobilized carbon nanotubes on graphite electrode fed with air: investigation of operational parameters. J. Electroanal. Chem. 659, 63–68 (2011).

    Article  CAS  Google Scholar 

  31. Jiang, Y. et al. Selective electrochemical H2O2 production through two‐electron oxygen electrochemistry. Adv. Energy Mater. 8, 1801909 (2018).

    Article  Google Scholar 

  32. Bokare, A. D. & Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 275, 121–135 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Madsen, D., Larsen, J., Jensen, S. K., Keiding, S. R. & Thøgersen, J. The primary photodynamics of aqueous nitrate: formation of peroxynitrite. J. Am. Chem. Soc. 125, 15571–15576 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Koch, T. G. & Sodeau, J. R. Photochemistry of nitric acid in low-temperature matrixes. J. Phys. Chem. B 99, 10824–10829 (1995).

    Article  CAS  Google Scholar 

  35. Mollner, A. K. et al. Rate of gas phase association of hydroxyl radical and nitrogen dioxide. Science 330, 646–649 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Cook, R. L. & Sammells, A. F. Ambient temperature methane activation to condensed species under cathodic conditions. J. Electrochem. Soc. 137, 2007–2008 (1990).

    Article  CAS  Google Scholar 

  37. Shao, M. H. & Adzic, R. R. Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study. Electrochim. Acta 50, 2415–2422 (2005).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  42. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    Article  PubMed  Google Scholar 

  43. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  45. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  46. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  47. Alavi, A., Hu, P., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    Article  CAS  Google Scholar 

  48. Michaelides, A. & Hu, P. Insight into microscopic reaction pathways in heterogeneous catalysis. J. Am. Chem. Soc. 122, 9866–9867 (2000).

    Article  CAS  Google Scholar 

  49. Michaelides, A. & Hu, P. Catalytic water formation on platinum: a first-principles study. J. Am. Chem. Soc. 123, 4235–4242 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E. & Jacobsen, K. W. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the National Natural Science Foundation of China (numbers 21988101, 22225204, 21890753 to D.D., and number 22272170 to L.Y.), the Ministry of Science and Technology of China (number 2022YFA1504500 to D.D.), and the Strategic Priority Research Program of the Chinese Academy of Science (number XDB36030200 to D.D.). We thank Z. Peng and Z. Zhao from the Dalian Institute of Chemical Physics for help with in situ infrared and in situ Raman measurements.

Author information

Authors and Affiliations

Authors

Contributions

D.D. conceived the project. S.C. carried out the experiments and the manuscript preparation. L.Y. supervised the DFT calculations and manuscript revision. S.L. performed DFT calculations. R.H., M.Z., Y.S., Y.Z. and S.T. assisted with experiments and data analysis. All authors contributed to scientific discussion of the manuscript. S.C., S.L., L.Y. and D.D. wrote the paper.

Corresponding authors

Correspondence to Liang Yu or Dehui Deng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Guofeng Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Comparison between the Faradaic Efficiency (FE) of the cathodic electroconversion of air to HNO3 and previously reported anodic electro-oxidation of N2 to HNO3 over metal-oxide catalysts at current densities higher than 1 mA·cm−2
Extended Data Table 2 The standard molar Gibbs free energy of formation (ΔfGmΘ) for the molecules and ions used in this work

Extended Data Fig. 1

H-type electrolytic cell separated with Nafion membrane.

Extended Data Fig. 2 Investigation of the reaction performances by using directly added H2O2 and in-situ generated H2O2.

a, Schematic overview of N2 oxidation using in-situ generated H2O2 from oxygen reduction reaction (ORR). b, The histogram of HNO3 formation rates and Faradaic Efficiency with different concentration of FeSO4 (Typical reaction conditions: 0.25 mol·L−1 Li2SO4 with pH adjusted to 3 by H2SO4, PO2/PN2 =1/1, 0 V vs. RHE). c, The schematic overview that N2 was oxidated to HNO3 by ·OH from Fenton reaction. d, The formation rate of HNO3 at different concentrations of FeSO4 (8 mol·L−1 of H2O2 and 100 mL·min−1 of N2). The produced trace amount of HNO3 is due to the use of high concentration H2O2 (8 mol·L−1), which can still produce certain amount of OH radicals for N2 oxidation even in the absence of FeSO4.

Source data

Extended Data Fig. 3 Catalytic performance testing for the electroconversion of air to HNO3 with different electrodes.

Catalytic performance of graphite rod, Pt Foil, Cu Foil and Ag Foil. Typical reaction conditions: 0.25 mol·L−1 Li2SO4 with pH adjusted to 3 by H2SO4, PO2/PN2 = 1/1, 0 V vs. RHE, 1 mmol·L−1 FeSO4. Data are presented as mean values +/− standard deviation. The errors were obtained by repeating the reaction for three times (n = 3).

Source data

Extended Data Fig. 4 Investigation of the reaction intermediates in the electroconversion of air to HNO3 with UV-vis absorbance spectra.

The UV-vis spectra of H2N2O2 and NO3 standards and experiment sample were performed in the operando conditions. Typical reaction conditions: 0.25 mol·L−1 Li2SO4 with pH adjusted to 3 by H2SO4, PO2/PN2 =1/1, 0 V vs. RHE, 1 mmol·L−1 FeSO4.

Source data

Extended Data Fig. 5 Investigation of the reaction intermediates in the electroconversion of air to HNO3 with in-situ surface-enhanced infrared absorption spectroscopy (SEIRAS) 2D spectra.

Typical reaction conditions: 0.25 mol·L−1 Li2SO4 with pH adjusted to 3 by H2SO4, PO2/PN2 =1/1, 0 V vs. RHE, 1 mmol·L−1 FeSO4.

Source data

Extended Data Fig. 6

Potential energy surface for searching the transition state of O radical (·O) formation from hydroxyl radical (·OH).

Source data

Supplementary information

Supplementary Information

Supplementary Figs 1–16.

Source Data for Supplementary Figure S1

Statistical Source Data

Source Data for Supplementary Figure S2

Statistical Source Data

Source Data for Supplementary Figure S3

Statistical Source Data

Source Data for Supplementary Figure S4

Statistical Source Data

Source Data for Supplementary Figure S5

Statistical Source Data

Source Data for Supplementary Figure S6

Statistical Source Data

Source Data for Supplementary Figure S7

Statistical Source Data

Source Data for Supplementary Figure S8

Statistical Source Data

Source Data for Supplementary Figure S9

Statistical Source Data

Source Data for Supplementary Figure S10

Statistical Source Data

Source Data for Supplementary Figure S11

Statistical Source Data

Source Data for Supplementary Figure S12

Statistical Source Data

Source Data for Supplementary Figure S13

Statistical Source Data

Source Data for Supplementary Figure S14

Statistical Source Data

Source Data for Supplementary Figure S15

Statistical Source Data

Source Data for Supplementary Figure S16

Statistical Source Data

Source data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Extended Data Fig.2

Statistical Source Data

Source Data Extended Data Fig.3

Statistical Source Data

Source Data Extended Data Fig.4

Statistical Source Data

Source Data Extended Data Fig.5

Statistical Source Data

Source Data Extended Data Fig.6

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Liang, S., Huang, R. et al. Direct electroconversion of air to nitric acid under mild conditions. Nat. Synth 3, 76–84 (2024). https://doi.org/10.1038/s44160-023-00399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00399-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing