Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chemoenzymatic synthesis of human natural killer-1-containing glycans and application as serum antibodies probes

Abstract

Despite the versatility of enzyme-mediated oligosaccharide assembly, it has as a limitation that not all glycosyl transferases or glycan-modifying enzymes are readily available to install all natural occurring terminal epitopes. Here a chemoenzymatic strategy is described in which a core oligosaccharide is assembled enzymatically that is subjected to chemical manipulations to install complex terminal epitopes. It provided an unprecedented panel of human natural killer-1 (HSO3–3GlcAβ1–3Galβ1–4GlcNAc)-containing oligosaccharides and derivatives thereof. The compounds were printed as a microarray to examine binding specificities of serum antibodies of patients suffering from anti-myelin-associated glycoprotein neuropathy. All samples required glucuronic acid for antibody binding; however, variable dependence was observed for the length of the LacNAc chain and sulfation of glucuronic acid. Most serum samples required a lacto-neohexaose backbone indicating glycosphingolipids are being targeted. The clinical spectrum of immunoglobulin M monoclonal gammopathy varies, and the glycan microarray provides a more reliable platform for disease diagnosis and prognosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural occurrence of HNK-1-containing glycoconjugates and target oligosaccharides for chemoenzymatic synthesis.
Fig. 2: Schematic representation of an alternative strategy for chemoenzymatic synthesis of glycans.
Fig. 3: Chemoenzymatic synthesis of precursor compounds 20a–c.
Fig. 4: Chemical terminal epitope installation on enzymatically prepared oligo-LacNAc precursor.
Fig. 5: NMR spectroscopic characterization of the conformational changes of the GlcA moiety of compounds 23c, 24c and 18c from 4C1 to 1C4 to 4C1 induced by lactonization and lactone hydrolysis, respectively.
Fig. 6: Synthesis of control compounds 7–14 from common precursors.
Fig. 7: Validation of glycan binding array by mAbs, lectins and Gal-3.
Fig. 8: Binding specificities of serum IgM antibodies of patients with anti-MAG neuropathy.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are included in this article and in the Supplementary Information file. Source data are provided with this paper.

Code availability

The Excel macro for batch processing glycan microarray data is uploaded to https://github.com/enthalpyliu/carbohydrate-microarray-processing.

References

  1. Morise, J., Takematsu, H. & Oka, S. The role of human natural killer-1 (HNK-1) carbohydrate in neuronal plasticity and disease. Biochim. Biophys. Acta Gen. Subj. 1861, 2455–2461 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Hansen, L. et al. A glycogene mutation map for discovery of diseases of glycosylation. Glycobiology 25, 211–224 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Li, T. A. & Schnaar, R. L. Congenital disorders of ganglioside biosynthesis. Prog. Mol. Biol. Transl. Sci. 156, 63–82 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Abo, T. & Balch, C. M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J. Immunol 127, 1024–1029 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Omlin, F. X., Matthieu, J. M., Philippe, E., Roch, J. M. & Droz, B. Expression of myelin-associated glycoprotein by small neurons of the dorsal root ganglion in chickens. Science 227, 1359–1360 (1985).

    Article  CAS  PubMed  Google Scholar 

  6. Kohriyama, T. et al. Subcellular localization of sulfated glucuronic acid-containing glycolipids reacting with anti-myelin-associated glycoprotein antibody. J. Neurochem. 48, 1516–1522 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Needham, L. K. & Schnaar, R. L. Carbohydrate recognition in the peripheral nervous system: a calcium-dependent membrane binding site for HNK-1 reactive glycolipids potentially involved in Schwann cell adhesion. J. Cell Biol. 121, 397–408 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Martini, R., Schachner, M. & Brushart, T. M. The L2/HNK-1 carbohydrate is preferentially expressed by previously motor axon-associated Schwann cells in reinnervated peripheral nerves. J. Neurosci. 14, 7180–7191 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schwarting, G. A., Jungalwala, F. B., Chou, D. K., Boyer, A. M. & Yamamoto, M. Sulfated glucuronic acid-containing glycoconjugates are temporally and spatially regulated antigens in the developing mammalian nervous system. Dev. Biol. 120, 65–76 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Morita, I., Kakuda, S., Takeuchi, Y., Kawasaki, T. & Oka, S. HNK-1 (human natural killer-1) glyco-epitope is essential for normal spine morphogenesis in developing hippocampal neurons. Neuroscience 164, 1685–1694 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Needham, L. K. & Schnaar, R. L. The HNK-1 reactive sulfoglucuronyl glycolipids are ligands for L-selectin and P-selectin but not E-selectin. Proc. Natl Acad. Sci. USA 90, 1359–1363 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Probstmeier, R., Montag, D. & Schachner, M. Galectin-3, a β-galactoside-binding animal lectin, binds to neural recognition molecules. J. Neurochem. 64, 2465–2472 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Schachner, M. & Martini, R. Glycans and the modulation of neural-recognition molecule function. Trends Neurosci. 18, 183–191 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Ayllon, M. S. et al. HNK-1 carrier glycoproteins are decreased in the Alzheimer’s disease brain. Mol. Neurobiol. 54, 188–199 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Braun, P. E., Frail, D. E. & Latov, N. Myelin‐associated glycoprotein is the antigen for a monoclonal IgM in polyneuropathy. J. Neurochem. 39, 1261–1265 (1982).

    Article  CAS  PubMed  Google Scholar 

  16. McGarry, R. C., Helfand, S. L., Quarles, R. H. & Roder, J. C. Recognition of myelin-associated glycoprotein by the monoclonal antibody HNK-1. Nature 306, 376–378 (1983).

    Article  CAS  PubMed  Google Scholar 

  17. Ilyas, A. A. et al. IgM in a human neuropathy related to paraproteinemia binds to a carbohydrate determinant in the myelin-associated glycoprotein and to a ganglioside. Proc. Natl Acad. Sci. USA 81, 1225–1229 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chou, D. K. H. et al. Structure of sulfated glucuronyl glycolipids in the nervous-system reacting with Hnk-1 antibody and some igm paraproteins in neuropathy. J. Biol. Chem. 261, 1717–1725 (1986).

    Article  Google Scholar 

  19. Chou, D. K., Flores, S. & Jungalwala, F. B. Expression and regulation of UDP-glucuronate: neolactotetraosylceramide glucuronyltransferase in the nervous system. J. Biol. Chem. 266, 17941–17947 (1991).

    Article  CAS  PubMed  Google Scholar 

  20. Ariga, T. The role of sulfoglucuronosyl glycosphingolipids in the pathogenesis of monoclonal IgM paraproteinemia and peripheral neuropathy. Proc. Jpn Acad. Ser. B 87, 386–404 (2011).

    Article  CAS  Google Scholar 

  21. Willison, H. J. et al. Demyelination induced by intraneural injection of human antimyelin-associated glycoprotein antibodies. Muscle Nerve 11, 1169–1176 (1988).

    Article  CAS  PubMed  Google Scholar 

  22. Kusunoki, S., Willison, H. J. & Jacobs, B. C. Antiglycolipid antibodies in Guillain–Barre and Fisher syndromes: discovery, current status and future perspective. J. Neurol. Neurosurg. Psychiatry 92, 311–318 (2021).

    Article  PubMed  Google Scholar 

  23. Cummings, R. D. & Pierce, J. M. The challenge and promise of glycomics. Chem. Biol. 21, 1–15 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taylor, M. E. & Drickamer, K. Mammalian sugar-binding receptors: known functions and unexplored roles. FEBS J. 286, 1800–1814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thompson, A. J., de Vries, R. P. & Paulson, J. C. Virus recognition of glycan receptors. Curr. Opin. Virol. 34, 117–129 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cohen, M. & Varki, A. The sialome—far more than the sum of its parts. OMICS 14, 455–464 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Lowary, T. L. Context and complexity: the next big thing in synthetic glycobiology. Curr. Opin. Chem. Biol. 17, 990–996 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Haji-Ghassemi, O., Blackler, R. J., Martin Young, N. & Evans, S. V. Antibody recognition of carbohydrate epitopesdagger. Glycobiology 25, 920–952 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Ariga, T. et al. Characterization of sulfated glucuronic acid containing glycolipids reacting with IgM M-proteins in patients with neuropathy. J. Biol. Chem. 262, 848–853 (1987).

    Article  CAS  PubMed  Google Scholar 

  30. Voshol, H., van Zuylen, C. W., Orberger, G., Vliegenthart, J. F. & Schachner, M. Structure of the HNK-1 carbohydrate epitope on bovine peripheral myelin glycoprotein P0. J. Biol. Chem. 271, 22957–22960 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Liedtke, S. et al. Characterization of N-glycans from mouse brain neural cell adhesion molecule. Glycobiology 11, 373–384 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Bastide, L., Priem, B. & Fort, S. Chemo-bacterial synthesis and immunoreactivity of a brain HNK-1 analogue. Carbohydr. Res. 346, 348–351 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Hahm, H. S. et al. Automated glycan assembly of complex oligosaccharides related to blood group determinants. J. Org. Chem. 81, 5866–5877 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Gao, T. et al. Chemoenzymatic synthesis of O-mannose glycans containing sulfated or nonsulfated HNK-1 epitope. J. Am. Chem. Soc. 141, 19351–19359 (2019).

    Article  CAS  PubMed  Google Scholar 

  35. Kornilov, A. V., Sherman, A. A., Kononov, L. O., Shashkov, A. S. & Nifant’ev, N. E. Synthesis of 3-O-sulfoglucuronyl lacto-N-neotetraose 2-aminoethyl glycoside and biotinylated neoglycoconjugates thereof. Carbohydr. Res. 329, 717–730 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Kuijf, M. L. et al. Detection of anti-MAG antibodies in polyneuropathy associated with IgM monoclonal gammopathy. Neurology 73, 688–695 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Schmaltz, R. M., Hanson, S. R. & Wong, C. H. Enzymes in the synthesis of glycoconjugates. Chem. Rev. 111, 4259–4307 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Armstrong, Z. & Withers, S. G. Synthesis of glycans and glycopolymers through engineered enzymes. Biopolymers 99, 666–674 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Li, W., McArthur, J. B. & Chen, X. Strategies for chemoenzymatic synthesis of carbohydrates. Carbohydr. Res. 472, 86–97 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Na, L., Li, R. & Chen, X. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr. Opin. Chem. Biol. 61, 81–95 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Wang, Z. et al. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 341, 379–383 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Li, L. et al. Efficient chemoenzymatic synthesis of an N-glycan isomer library. Chem. Sci. 6, 5652–5661 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Shivatare, S. S. et al. Modular synthesis of N-glycans and arrays for the hetero-ligand binding analysis of HIV antibodies. Nat. Chem. 8, 338–346 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gagarinov, I. A. et al. Chemoenzymatic approach for the preparation of asymmetric bi-, tri-, and tetra-antennary N-glycans from a common precursor. J. Am. Chem. Soc. 139, 1011–1018 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wang, S. et al. Chemoenzymatic modular assembly of O-GalNAc glycans for functional glycomics. Nat. Commun. 12, 3573 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lairson, L. L., Henrissat, B., Davies, G. J. & Withers, S. G. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77, 521–555 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Moremen, K. W. et al. Expression system for structural and functional studies of human glycosylation enzymes. Nat. Chem. Biol. 14, 156–162 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Moremen, K. W. & Haltiwanger, R. S. Emerging structural insights into glycosyltransferase-mediated synthesis of glycans. Nat. Chem. Biol. 15, 853–864 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Prudden, A. R. et al. Synthesis of asymmetrical multiantennary human milk oligosaccharides. Proc. Natl Acad. Sci. USA 114, 6954–6959 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sala, R. F., MacKinnon, S. L., Palcic, M. M. & Tanner, M. E. UDP-N-trifluoroacetylglucosamine as an alternative substrate in N-acetylglucosaminyltransferase reactions. Carbohydr. Res. 306, 127–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, R. et al. Chemoenzymatic design of heparan sulfate oligosaccharides. J. Biol. Chem. 285, 34240–34249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liu, L. et al. Streamlining the chemoenzymatic synthesis of complex N-glycans by a stop and go strategy. Nat. Chem. 11, 161–169 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Lu, N. et al. Redox-controlled site-specific α2-6-sialylation. J. Am. Chem. Soc. 141, 4547–4552 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ye, J. et al. Reprogramming the enzymatic assembly line for site-specific fucosylation. Nat. Catal. 2, 514–522 (2019).

    Article  CAS  Google Scholar 

  55. Krasnova, L. & Wong, C. H. Oligosaccharide synthesis and translational innovation. J. Am. Chem. Soc. 141, 3735–3754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Goddard-Borger, E. D. & Stick, R. V. An efficient, inexpensive, and shelf-stable diazotransfer reagent: imidazole-1-sulfonyl azide hydrochloride. Org. Lett. 9, 3797–3800 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Guilbert, B., Davis, N. J., Pearce, M., Aplin, R. T. & Flitsch, S. L. Dibutylstannylene acetals: useful intermediates for the regioselective sulfation of glycosides. Tetrahedron Asymmetry 5, 2163–2178 (1994).

    Article  CAS  Google Scholar 

  58. Manning, D. D., Bertozzi, C. R., Rosen, S. D. & Kiessling, L. L. Tin-mediated phosphorylation: synthesis and selectin binding of a phospho Lewis a analog. Tetrahedron Lett. 37, 1953–1956 (1996).

    Article  CAS  Google Scholar 

  59. Codee, J. D., Christina, A. E., Walvoort, M. T., Overkleeft, H. S. & van der Marel, G. A. Uronic acids in oligosaccharide and glycoconjugate synthesis. Top. Curr. Chem. 301, 253–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  60. Bock, K. & Pedersen, C. A study of 13CH coupling constants in hexopyranoses. J. Chem. Soc. Perkin Trans. 2, 293–297 (1974).

  61. Hayes, M. L., Serianni, A. S. & Barker, R. Methyl β-lactoside: 600-MHz 1H- and 75-MHz 13C-n.m.r. studies of 2H- and 13C-enriched compounds. Carbohydr. Res. 100, 87–101 (1982).

    Article  CAS  Google Scholar 

  62. Bock, K. & Pedersen, C. Solvent effects on one-bond, 13C1H coupling constants of carbohydrates. Carbohydr. Res. 71, 319–321 (1979).

    Article  CAS  Google Scholar 

  63. Bose-Basu, B. et al. 13C-labeled idohexopyranosyl rings: effects of methyl glycosidation and C6 oxidation on ring conformational equilibria. J. Org. Chem. 82, 1356–1370 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Bubb, W. A. NMR spectroscopy in the study of carbohydrates: characterizing the structural complexity. Concepts Magn. Reson. 19A, 1–19 (2003).

    Article  CAS  Google Scholar 

  65. Yako, K., Kusunoki, S. & Kanazawa, I. Serum antibody against a peripheral nerve myelin ganglioside, LM1, in Guillain–Barre syndrome. J. Neurol. Sci. 168, 85–89 (1999).

    Article  CAS  PubMed  Google Scholar 

  66. Dabby, R., Weimer, L. H., Hays, A. P., Olarte, M. & Latov, N. Antisulfatide antibodies in neuropathy: clinical and electrophysiologic correlates. Neurology 54, 1448–1452 (2000).

    Article  CAS  PubMed  Google Scholar 

  67. Nielsen, C. M., White, M. J., Goodier, M. R. & Riley, E. M. Functional significance of CD57 expression on human NK cells and relevance to disease. Front. Immunol. 4, 422 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Woods, R. J. et al. Engineered high‐specificity affinity reagents for the detection of glycan sialylation. FASEB J. 33, 801.2–801.2 (2019).

    Article  Google Scholar 

  69. Hirabayashi, J. et al. Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta 1572, 232–254 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Morita, I., Kizuka, Y., Kakuda, S. & Oka, S. Expression and function of the HNK-1 carbohydrate. J. Biochem. 143, 719–724 (2008).

    Article  CAS  PubMed  Google Scholar 

  71. Sakuda, K. et al. Reactivity of anti-HNK-1 antibodies to branched O-mannose glycans associated with demyelination. Biochem. Biophys. Res. Commun. 487, 450–456 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Gagarinov, I. A. et al. Protecting-group-controlled enzymatic glycosylation of oligo-N-acetyllactosamine derivatives. Angew. Chem. Int. Ed. 58, 10547–10552 (2019).

    Article  CAS  Google Scholar 

  73. Li, Y. et al. Donor substrate promiscuity of bacterial β1–3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1–4-galactosyltransferases. Bioorg. Med. Chem. 24, 1696–1705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li, Z. et al. Synthetic O-acetylated sialosides facilitate functional receptor identification for human respiratory viruses. Nat. Chem. 13, 496–503 (2021).

    Article  CAS  PubMed  Google Scholar 

  75. Visser, E. A. et al. Sialic acid O-acetylation: from biosynthesis to roles in health and disease. J. Biol. Chem. 297, 100906 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Funderburgh, J. L. Keratan sulfate biosynthesis. IUBMB Life 54, 187–194 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maki, Y., Okamoto, R., Izumi, M., Murase, T. & Kajihara, Y. Semisynthesis of intact complex-type triantennary oligosaccharides from a biantennary oligosaccharide isolated from a natural source by selective chemical and enzymatic glycosylation. J. Am. Chem. Soc. 138, 3461–3468 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. de Jong, H., Wosten, M. M. S. M. & Wennekes, T. Sweet impersonators: molecular mimicry of host glycans by bacteria. Glycobiology 32, 11–22 (2022).

    Article  PubMed  Google Scholar 

  79. Klaric, T. S. & Lauc, G. The dynamic brain N-glycome. Glycoconj. J. 39, 443–471 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Rillahan, C. D. & Paulson, J. C. Glycan microarrays for decoding the glycome. Annu. Rev. Biochem. 80, 797–823 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dalakas, M. C. Advances in the diagnosis, immunopathogenesis and therapies of IgM-anti-MAG antibody-mediated neuropathies. Ther. Adv. Neurol. Disord. 11, 1756285617746640 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Lunn, M. P. & Nobile-Orazio, E. Immunotherapy for IgM anti-myelin-associated glycoprotein paraprotein-associated peripheral neuropathies. Cochrane Database Syst. Rev. 10, CD002827 (2016).

    PubMed  Google Scholar 

  83. Herrendorff, R. et al. Selective in vivo removal of pathogenic anti-MAG autoantibodies, an antigen-specific treatment option for anti-MAG neuropathy. Proc. Natl Acad. Sci. USA 114, E3689–E3698 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by TOP-PUNT grant 718.015.003 of the Netherlands Organization for Scientific Research (to G.-J.B.) and ERC-ADG grant 101020769 of the European Commission (to G.-J.B.). R.H. was funded by the GBS/CIDP Foundation International and the T2B collaboration project funded by PPP Allowance made available by Top Sector Life Sciences & Health to Samenwerkende Gezondheidsfondsen (SGF) under project number LSHM18055-SGF.

Author information

Authors and Affiliations

Authors

Contributions

M.B., M.A.W., R.H., B.C.J. and G.-J.B. conceived the studies; M.B. and G.-J.B. conceived the chemoenzymatic approach; M.B. performed the chemoenzymatic synthesis; M.A.W. and L.L. performed the array studies and associated data analysis; M.W.J.S. performed the Bühlmann ELISA assay; M.B., M.A.W., R.H., B.C.J. and G.-J.B. wrote the paper.

Corresponding author

Correspondence to Geert-Jan Boons.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Rachel Willand-Charnley, Martina Delbianco and Sabine Flitsch for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods and synthesis, Figs. 1–14, Table 1 and copies of MS and NMR spectra.

Reporting Summary

Source Data 1

Source data Supplementary Fig. 12.

Source Data 2

Source data Supplementary Fig. 13.

Source data

Source Data Fig. 7

Data microarray of Fig. 7.

Source Data Fig. 8

Data microarray of Fig. 8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bunyatov, M., Wolfert, M.A., Liu, L. et al. Chemoenzymatic synthesis of human natural killer-1-containing glycans and application as serum antibodies probes. Nat. Synth 3, 85–98 (2024). https://doi.org/10.1038/s44160-023-00394-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00394-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing