Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-temperature non-equilibrium synthesis of anisotropic multimetallic nanosurface alloys for electrochemical CO2 reduction

Abstract

Multimetallic nanoparticles are of interest as functional materials due to their highly tunable properties. However, synthesizing congruent mixtures of immiscible components is limited by the need for high-temperature procedures followed by rapid quenching that lack size and shape control. Here we report a low-temperature (≤80 °C) non-equilibrium synthesis of nanosurface alloys (NSAs) with tunable size, shape and composition regardless of miscibility. We show the generality of our method by producing both bulk miscible and immiscible monodisperse anisotropic Cu-based NSAs of up to three components. We demonstrate our synthesis as a screening platform to investigate the effects of crystal facet and elemental composition by testing tetrahedral, cubic and truncated-octahedral NSAs as catalysts in the electroreduction of CO2. The use of machine learning has enabled the prediction and informed synthesis of both multicarbon-product-selective and phase-stable Cu–Ag–Pd compositions. This combination of non-equilibrium synthesis and theory-guided candidate selection is expected to accelerate test–learn–repeat cycles of structure–performance optimization processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The conventional and non-equilibrium synthesis.
Fig. 2: Structural and compositional analysis of anisotropic Cu–Ag NSAs.
Fig. 3: XPS/XAS analysis of anisotropic Cu–Ag NSAs.
Fig. 4: Determination of the penetration depth of Ag in the NSAs.
Fig. 5: Electrocatalysis of (an)isotropic Cu–Ag NPs and NSAs.
Fig. 6: Phase segregation of Cu–Ag NSAs during the electrochemical CO2 reduction reaction (CO2RR).
Fig. 7: Theory-guided optimization of the ternary alloy system.

Similar content being viewed by others

Data availability

The data generated in this study are provided in supplementary information and source data. Source data are provided with this paper.

Code availability

DFT simulated atomic structures have been made freely available at https://nano.ku.dk/english/research/theoretical-electrocatalysis/katladb/co2-reduction-on-ag-cu-pd/.

References

  1. Cui, C., Gan, L., Heggen, M., Rudi, S. & Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Niu, Z. et al. Anisotropic phase segregation and migration of Pt in nanocrystals en route to nanoframe catalysts. Nat. Mater. 15, 1188–1194 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Taccardi, N. et al. Gallium-rich Pd–Ga phases as supported liquid metal catalysts. Nat. Chem. 9, 862–867 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    Article  CAS  PubMed  Google Scholar 

  5. Batchelor, T. A. A. et al. High-entropy alloys as a discovery platform for electrocatalysis. Joule 3, 834–845 (2019).

    Article  CAS  Google Scholar 

  6. Zhang, X. et al. Reversible loss of core–shell structure for Ni–Au bimetallic nanoparticles during CO2 hydrogenation. Nat. Catal. 3, 411–417 (2020).

    Article  CAS  Google Scholar 

  7. Xing, F., Nakaya, Y., Yasumura, S., Shimizu, K. & Furukawa, S. Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2. Nat. Catal. 5, 55–65 (2022).

    Article  CAS  Google Scholar 

  8. Pedersen, J. K., Batchelor, T. A. A., Bagger, A. & Rossmeisl, J. High-entropy alloys as catalysts for the CO2 and CO reduction reactions. ACS Catal. 10, 2169–2176 (2020).

    Article  CAS  Google Scholar 

  9. Sankar, M. et al. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 41, 8099–8139 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Xie, C., Niu, Z., Kim, D., Li, M. & Yang, P. Surface and interface control in nanoparticle catalysis. Chem. Rev. 120, 1184–1249 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Tabrizi, N. S., Xu, Q., van der Pers, N. M. & Schmidt-Ott, A. Generation of mixed metallic nanoparticles from immiscible metals by spark discharge. J. Nanoparticle Res. 12, 247–259 (2010).

    Article  CAS  Google Scholar 

  12. Kane, K. A., Reber, A. C., Khanna, S. N. & Bertino, M. F. Laser synthesized nanoparticle alloys of metals with bulk miscibility gaps. Prog. Nat. Sci. Mater. Int. 28, 456–463 (2018).

    Article  CAS  Google Scholar 

  13. Feng, J., Ramlawi, N., Biskos, G. & Schmidt-Ott, A. Internally mixed nanoparticles from oscillatory spark ablation between electrodes of different materials. Aerosol Sci. Technol. 52, 505–514 (2018).

    Article  CAS  Google Scholar 

  14. Yao, Y. et al. Carbothermal shock synthesis of high-entropy-alloy nanoparticles. Science 359, 1489–1494 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, C. et al. Overcoming immiscibility toward bimetallic catalyst library. Sci. Adv. 6, eaaz6844 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guntern, Y. T. et al. Colloidal nanocrystals as electrocatalysts with tunable activity and selectivity. ACS Catal. 11, 1248–1295 (2021).

    Article  CAS  Google Scholar 

  17. Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Selective formation of C2 compounds from electrochemical reduction of CO2 at a series of copper single crystal electrodes. J. Phys. Chem. B 106, 15–17 (2002).

    Article  CAS  Google Scholar 

  18. Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Article  CAS  Google Scholar 

  19. Iyengar, P., Huang, J., Gregorio, G. L. D., Gadiyar, C. & Buonsanti, R. Size dependent selectivity of Cu nano-octahedra catalysts for the electrochemical reduction of CO2 to CH4. Chem. Commun. 55, 8796–8799 (2019).

    Article  CAS  Google Scholar 

  20. Schouten, K. J. P., Pérez Gallent, E. & Koper, M. T. M. Structure sensitivity of the electrochemical reduction of carbon monoxide on copper single crystals. ACS Catal. 3, 1292–1295 (2013).

    Article  CAS  Google Scholar 

  21. Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Higgins, D. et al. Guiding electrochemical carbon dioxide reduction toward carbonyls using copper silver thin films with interphase miscibility. ACS Energy Lett. 3, 2947–2955 (2018).

    Article  CAS  Google Scholar 

  23. Wang, X. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag–Ru–Cu catalyst. Nat. Energy 7, 170–176 (2022).

    Article  Google Scholar 

  24. Xia, X., Wang, Y., Ruditskiy, A. & Xia, Y. 25th anniversary article: galvanic replacement: a simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 25, 6313–6333 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Subramanian, P. R. & Perepezko, J. H. The Ag–Cu (silver–copper) system. J. Phase Equilibria 14, 62–75 (1993).

    Article  CAS  Google Scholar 

  26. Kim, N. R., Shin, K., Jung, I., Shim, M. & Lee, H. M. Ag–Cu bimetallic nanoparticles with enhanced resistance to oxidation: a combined experimental and theoretical study. J. Phys. Chem. C 118, 26324–26331 (2014).

    Article  CAS  Google Scholar 

  27. Lee, C., Kim, N. R., Koo, J., Lee, Y. J. & Lee, H. M. Cu–Ag core–shell nanoparticles with enhanced oxidation stability for printed electronics. Nanotechnology 26, 455601 (2015).

    Article  PubMed  Google Scholar 

  28. Osowiecki, W. T. et al. Tailoring morphology of Cu–Ag nanocrescents and core–shell nanocrystals guided by a thermodynamic model. J. Am. Chem. Soc. 140, 8569–8577 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Huang, J., Mensi, M., Oveisi, E., Mantella, V. & Buonsanti, R. Structural sensitivities in bimetallic catalysts for electrochemical CO2 reduction revealed by Ag–Cu nanodimers. J. Am. Chem. Soc. 141, 2490–2499 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Hoang, T. T. H. et al. Nanoporous copper–silver alloys by additive-controlled electrodeposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Dettelbach, K. E. et al. Kinetic phases of Ag–Cu alloy films are accessible through photodeposition. J. Mater. Chem. A 7, 711–715 (2019).

    Article  CAS  Google Scholar 

  32. Ruban, A. V., Skriver, H. L. & Nørskov, J. K. Surface segregation energies in transition-metal alloys. Phys. Rev. B 59, 15990–16000 (1999).

    Article  Google Scholar 

  33. Koolen, C. D. et al. High-throughput sizing, counting, and elemental analysis of anisotropic multimetallic nanoparticles with single-particle inductively coupled plasma mass spectrometry. ACS Nano 16, 11968–11978 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Tran, R. et al. Surface energies of elemental crystals. Sci. Data 3, 160080 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koolen, C. D., Luo, W. & Züttel, A. From single crystal to single atom catalysts: structural factors influencing the performance of metal catalysts for CO2 electroreduction. ACS Catal. 13, 948–973 (2022).

    Article  Google Scholar 

  36. Sprunger, P. T., Lægsgaard, E. & Besenbacher, F. Growth of Ag on Cu(100) studied by STM: from surface alloying to Ag superstructures. Phys. Rev. B 54, 8163–8171 (1996).

    Article  CAS  Google Scholar 

  37. Berakdar, J. & Kirschner, J. Many-Particle Spectroscopy of Atoms, Molecules, Clusters, and Surfaces (Springer, 2001).

  38. Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 1–8 (2014).

    Article  Google Scholar 

  39. Frenkel, A. I., Yevick, A., Cooper, C. & Vasic, R. Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu. Rev. Anal. Chem. 4, 23–39 (2011).

    Article  CAS  Google Scholar 

  40. Sun, D. T. et al. Rapid, selective heavy metal removal from water by a metal–organic framework/polydopamine composite. ACS Cent. Sci. 4, 349–356 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bencan, A. et al. Atomic scale symmetry and polar nanoclusters in the paraelectric phase of ferroelectric materials. Nat. Commun. 12, 3509 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hansen, M. & Anderko, K. Constitution of Binary Alloys 2nd edn (McGraw Hill Book Company, 1958).

  43. Tsaur, B. Y., Lau, S. S. & Mayer, J. W. Continuous series of metastable Ag–Cu solid solutions formed by ion‐beam mixing. Appl. Phys. Lett. 36, 823–826 (1980).

    Article  CAS  Google Scholar 

  44. Cheng, H., Wang, C., Qin, D. & Xia, Y. Galvanic replacement synthesis of metal nanostructures: bridging the gap between chemical and electrochemical approaches. Acc. Chem. Res. 56, 900–909 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bratsch, S. G. Standard electrode potentials and temperature coefficients in water at 298.15 K. J. Phys. Chem. Ref. Data 18, 1–21 (1989).

    Article  CAS  Google Scholar 

  46. Hori, Y., Takahashi, I., Koga, O. & Hoshi, N. Electrochemical reduction of carbon dioxide at various series of copper single crystal electrodes. J. Mol. Catal. Chem. 199, 39–47 (2003).

    Article  CAS  Google Scholar 

  47. Wu, Z.-Z. et al. Identification of Cu(100)/Cu(111) interfaces as superior active sites for CO dimerization during CO2 electroreduction. J. Am. Chem. Soc. 144, 259–269 (2022).

    Article  CAS  PubMed  Google Scholar 

  48. Salehi-Khojin, A. et al. Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J. Phys. Chem. C 117, 1627–1632 (2013).

    Article  CAS  Google Scholar 

  49. Wang, L. et al. Selective reduction of CO to acetaldehyde with CuAg electrocatalysts. Proc. Natl Acad. Sci. USA 117, 12572–12575 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Iyengar, P., Kolb, M. J., Pankhurst, J. R., Calle-Vallejo, F. & Buonsanti, R. Elucidating the facet-dependent selectivity for CO2 electroreduction to ethanol of Cu–Ag tandem catalysts. ACS Catal. 11, 4456–4463 (2021).

    Article  CAS  Google Scholar 

  52. Iyengar, P., Kolb, M. J., Pankhurst, J., Calle-Vallejo, F. & Buonsanti, R. Theory-guided enhancement of CO2 reduction to ethanol on Ag–Cu tandem catalysts via particle-size effects. ACS Catal. 11, 13330–13336 (2021).

    Article  CAS  Google Scholar 

  53. Yu, J. et al. Recent progresses in electrochemical carbon dioxide reduction on copper-based catalysts toward multicarbon products. Adv. Funct. Mater. 31, 2102151 (2021).

    Article  CAS  Google Scholar 

  54. Nørskov, J. K., Bligaard, T., Rossmeisl, J. & Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 1, 37–46 (2009).

    Article  PubMed  Google Scholar 

  55. Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Lum, Y. & Ager, J. W. Sequential catalysis controls selectivity in electrochemical CO2 reduction on Cu. Energy Environ. Sci. 11, 2935–2944 (2018).

    Article  CAS  Google Scholar 

  57. Subramanian, P. R. & Laughlin, D. E. Cu–Pd (copper–palladium). J. Phase Equilibria 12, 231–243 (1991).

    Article  CAS  Google Scholar 

  58. Bagger, A., Ju, W., Varela, A. S., Strasser, P. & Rossmeisl, J. Electrochemical CO2 reduction: a classification problem. Chem. Phys. Chem. 18, 3266–3273 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Clausen, C. M., Pedersen, J. K., Batchelor, T. A. A. & Rossmeisl, J. Lattice distortion releasing local surface strain on high-entropy alloys. Nano Res. 15, 4775–4779 (2022).

    Article  CAS  Google Scholar 

  60. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  Google Scholar 

  61. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Larsen, A. H. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  63. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Swiss National Science Foundation (Ambizione Project PZ00P2_179989). M.L. acknowledges the financial support from China Scholarship Council (grant no. 201506060156). J.K.P. and J.R. acknowledge support from the Danish National Research Foundation Center for High Entropy Alloy Catalysis (CHEAC) DNRF-149. L. Menin and N. Gasilova of the Mass Spectrometry and Elemental Analysis Platform (MSEAP), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion, Switzerland, are acknowledged for their facilitation of the ICP–MS/OES measurements. S. Phadke is acknowledged for his assistance in the preparation of the capillaries.

Author information

Authors and Affiliations

Authors

Contributions

C.D.K., W.L. and A.Z. conceptualized the project. W.L. and A.Z. supervised the project. C.D.K. developed the synthesis of the catalysts and performed the electrochemical tests, catalyst characterizations and the related data processing. E.O. performed the high-resolution transmission electron microscopy characterizations and the related data processing. J.Z. performed the SEM characterizations and assisted with the electrochemical tests and product analysis. M.L. performed the XPS analysis. O.V.S. performed the XAS measurement and related data treatment. J.K.P. performed the DFT simulation with supervision from J.R. C.D.K. and W.L. co-wrote the manuscript. All the authors discussed the results and revised the manuscript.

Corresponding author

Correspondence to Wen Luo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Joel Ager III and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Notes 1–9 and Tables 1–10.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koolen, C.D., Oveisi, E., Zhang, J. et al. Low-temperature non-equilibrium synthesis of anisotropic multimetallic nanosurface alloys for electrochemical CO2 reduction. Nat. Synth 3, 47–57 (2024). https://doi.org/10.1038/s44160-023-00387-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00387-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing