Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective nickel-catalysed electrochemical cross-dehydrogenative amination

Abstract

Enantio-enriched amines are found in a wide range of bioactive natural products and pharmaceutical agents. However, radical-based asymmetric cross-dehydrogenative amination via electrochemical oxidative C–H/N–H coupling to facilitate catalytic C(sp3)–N bond formation remains a largely unsolved challenge in organic synthesis. In the present study, we present nickel-catalysed, anodically coupled electrolysis for the stereoselective, cross-dehydrogenative amination of acylimidazoles, with commercially available nitrogen nucleophiles as coupling partners to access structurally diverse α-amino carbonyls. This method involves the coupling of an electrogenerated nickel-bound α-keto radical species and an aminyl radical to provide a stereoselective approach for the cross-dehydrogenative amination. The utility of this anodic oxidative strategy has been highlighted through the stereoselective synthesis of (+)-γ-secretase inhibitor, (+)-flamprop-methyl and (+)-flamprop-isopropyl.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the asymmetric electrochemical cross-dehydrogenative amination.
Fig. 2: Synthetic utility.
Fig. 3: Mechanistic investigation for asymmetric electrochemical cross-dehydrogenative amination.

Data availability

The experimental data as well as the characterization data for all the compounds prepared during these studies are provided in the Supplementary Information. Nuclear magnetic resonance data in a mnova file format and HPLC traces are available at Zenodo at https://zenodo.org/record/7902667#.ZFZK23ZBwuW, under the Creative Commons Attribution 4.0 International licence. Crystallographic data for the structures reported in the present study have been deposited at the Cambridge Crystallographic Data Centre, under deposition nos. CCDC 2234466 (3s) and CCDC 2234467 (21a). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures.

References

  1. Smith, A. M. R. & Hii, K. K. Transition metal catalyzed enantioselective α-heterofunctionalization of carbonyl compounds. Chem. Rev. 111, 1637–1656 (2011).

    CAS  PubMed  Google Scholar 

  2. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    CAS  PubMed  Google Scholar 

  3. Cho, H., Suematsu, H., Oyala, P. H., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yang, X. & Toste, F. D. Direct asymmetric amination of α-branched cyclic ketones catalyzed by a chiral phosphoric acid. J. Am. Chem. Soc. 137, 3205–3208 (2015).

    CAS  PubMed Central  Google Scholar 

  5. Ohmatsu, K., Ando, Y., Nakashima, T. & Ooi, T. A modular strategy for the direct catalytic asymmetric α-amination of carbonyl compounds. Chem 1, 802–810 (2016).

    CAS  Google Scholar 

  6. Guo, W. et al. Chiral phosphoric acid catalyzed enantioselective synthesis of α-tertiary amino ketones from sulfonium ylides. J. Am. Chem. Soc. 142, 14384–14390 (2020).

    CAS  PubMed  Google Scholar 

  7. Guo, W., Wang, M., Han, Z., Huang, H. & Sun, J. Organocatalytic asymmetric synthesis of α-amino esters from sulfoxonium ylides. Chem. Sci. 12, 11191–11196 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Liang, J.-L., Yu, X.-Q. & Che, C.-M. Amidation of silyl enol ethers and cholesteryl acetates with chiral ruthenium(ii) Schiff-base catalysts: catalytic and enantioselective studies. Chem. Commun. 124–125 (2002).

  9. Tokumasu, K., Yazaki, R. & Ohshima, T. Direct catalytic chemoselective α-amination of acylpyrazoles: a concise route to unnatural α-amino acid derivatives. J. Am. Chem. Soc. 138, 2664–2669 (2016).

    CAS  PubMed  Google Scholar 

  10. Lee, M., Jung, H., Kim, D., Park, J.-W. & Chang, S. Modular tuning of electrophilic reactivity of iridium nitrenoids for the intermolecular selective α-amidation of β-keto esters. J. Am. Chem. Soc. 142, 11999–12004 (2020).

    CAS  PubMed  Google Scholar 

  11. Hou, Z. et al. Highly enantioselective insertion of carbenoids into N–H bonds catalyzed by copper(I) complexes of binol derivatives. Angew. Chem. Int. Ed. 49, 4763–4766 (2010).

    CAS  Google Scholar 

  12. Zhu, S.-F. & Zhou, Q.-L. Transition-metal-catalyzed enantioselective heteroatom–hydrogen bond insertion reactions. Acc. Chem. Res. 45, 1365–1377 (2012).

    CAS  PubMed  Google Scholar 

  13. Li, M.-L., Yu, J.-H., Li, Y.-H., Zhu, S.-F. & Zhou, Q.-L. Highly enantioselective carbene insertion into N–H bonds of aliphatic amines. Science 366, 990–994 (2019).

    CAS  PubMed  Google Scholar 

  14. Gonçalves, C. R. et al. Unified approach to the chemoselective α-functionalization of amides with heteroatom nucleophiles. J. Am. Chem. Soc. 141, 18437–18443 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Matsuda, N., Hirano, K., Satoh, T. & Miura, M. Copper-catalyzed amination of ketene silyl acetals with hydroxylamines: electrophilic amination approach to α-amino acids. Angew. Chem. Int. Ed. 51, 11827–11831 (2012).

    CAS  Google Scholar 

  16. Cecere, G., König, C. M., Alleva, J. L. & MacMillan, D. W. C. Enantioselective direct α-amination of aldehydes via a photoredox mechanism: a strategy for asymmetric amine fragment coupling. J. Am. Chem. Soc. 135, 11521–11524 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shen, X., Harms, K., Marsch, M. & Meggers, E. A rhodium catalyst superior to iridium congeners for enantioselective radical amination activated by visible light. Chem. Eur. J. 22, 9102–9105 (2016).

    CAS  PubMed  Google Scholar 

  18. Li, C.-J. Cross-dehydrogenative coupling (CDC): exploring C−C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

    CAS  PubMed  Google Scholar 

  19. Lee, H. et al. Investigation of the C–N bond-forming step in a photoinduced, copper-catalyzed enantioconvergent N-alkylation: characterization and application of a stabilized organic radical as a mechanistic probe. J. Am. Chem. Soc. 144, 4114–4123 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. de la Torre, A., Tona, V. & Maulide, N. Reversing polarity: carbonyl α-aminations with nitrogen nucleophiles. Angew. Chem. Int. Ed. 56, 12416–12423 (2017).

    Google Scholar 

  21. Evans, R. W., Zbieg, J. R., Zhu, S., Li, W. & MacMillan, D. W. C. Simple catalytic mechanism for the direct coupling of α-carbonyls with functionalized amines: a one-step synthesis of plavix. J. Am. Chem. Soc. 135, 16074–16077 (2013).

    CAS  PubMed Central  Google Scholar 

  22. Zhou, L. et al. Transition-metal-assisted radical/radical cross-coupling: a new strategy to the oxidative C(sp3)–H/N–H cross-coupling. Org. Lett. 16, 3404–3407 (2014).

    CAS  PubMed  Google Scholar 

  23. Liu, S., Qi, X., Bai, R. & Lan, Y. Theoretical study of Ni-catalyzed C–N radical–radical cross-coupling. J. Org. Chem. 84, 3321–3327 (2019).

    CAS  PubMed  Google Scholar 

  24. Zhang, S.-K., Samanta, R. C., Sauermann, N. & Ackermann, L. Nickel-catalyzed electrooxidative C−H amination: support for nickel(IV). Chem. Eur. J. 24, 19166–19170 (2018).

    CAS  Google Scholar 

  25. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    CAS  PubMed  Google Scholar 

  26. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    CAS  PubMed  Google Scholar 

  27. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Feng, R., Smith, J. A. & Moeller, K. D. Anodic cyclization reactions and the mechanistic strategies that enable optimization. Acc. Chem. Res. 50, 2346–2352 (2017).

    CAS  PubMed  Google Scholar 

  29. Wiebe, A. et al. Electrifying organic synthesis. Angew. Chem. Int. Ed. 57, 5594–5619 (2018).

    CAS  Google Scholar 

  30. Möhle, S. et al. Modern electrochemical aspects for the synthesis of value-added organic products. Angew. Chem. Int. Ed. 57, 6018–6041 (2018).

    Google Scholar 

  31. Jiang, Y., Xu, K. & Zeng, C. Use of electrochemistry in the synthesis of heterocyclic structures. Chem. Rev. 118, 4485–4540 (2018).

    CAS  PubMed  Google Scholar 

  32. Moeller, K. D. Using physical organic chemistry to shape the course of electrochemical reactions. Chem. Rev. 118, 4817–4833 (2018).

    CAS  PubMed  Google Scholar 

  33. Nutting, J. E., Rafiee, M. & Stahl, S. S. Tetramethylpiperidine N-oxyl (TEMPO), phthalimide N-oxyl (PINO), and related N-oxyl species: electrochemical properties and their use in electrocatalytic reactions. Chem. Rev. 118, 4834–4885 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Tang, S., Liu, Y. & Lei, A. Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation. Chem 4, 27–45 (2018).

    CAS  Google Scholar 

  35. Meyer, T., Choi, I., Tian, C. & Ackermann, L. Powering the future: how can electrochemistry make a difference in organic synthesis? Chem 6, 2484–2496 (2020).

    CAS  Google Scholar 

  36. Kärkäs, M. D. Electrochemical strategies for C–H functionalization and C–N bond formation. Chem. Soc. Rev. 47, 5786–5865 (2018).

    PubMed  Google Scholar 

  37. Ghosh, M., Shinde, V. S. & Rueping, M. A review of asymmetric synthetic organic electrochemistry and electrocatalysis: concepts, applications, recent developments and future directions. Beilstein J. Org. Chem. 15, 2710–2746 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lin, Q., Li, L. & Luo, S. Asymmetric electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).

    CAS  PubMed  Google Scholar 

  39. Chang, X., Zhang, Q. & Guo, C. Asymmetric electrochemical transformations. Angew. Chem. Int. Ed. 59, 12612–12622 (2020).

    CAS  Google Scholar 

  40. Jensen, K. L., Franke, P. T., Nielsen, L. T., Daasbjerg, K. & Jørgensen, K. A. Anodic oxidation and organocatalysis: direct regio- and stereoselective access to meta-substituted anilines by α-arylation of aldehydes. Angew. Chem. Int. Ed. 49, 129–133 (2010).

    CAS  Google Scholar 

  41. Fu, N., Li, L., Yang, Q. & Luo, S. Catalytic asymmetric electrochemical oxidative coupling of tertiary amines with simple ketones. Org. Lett. 19, 2122–2125 (2017).

    CAS  PubMed  Google Scholar 

  42. DeLano, T. J. & Reisman, S. E. Enantioselective electroreductive coupling of alkenyl and benzyl halides via nickel catalysis. ACS Catal. 9, 6751–6754 (2019).

    CAS  PubMed Central  Google Scholar 

  43. Fu, N. et al. New bisoxazoline ligands enable enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Qiu, H. et al. Enantioselective Ni-catalyzed electrochemical synthesis of biaryl atropisomers. J. Am. Chem. Soc. 142, 9872–9878 (2020).

    CAS  PubMed  Google Scholar 

  45. Dhawa, U. et al. Enantioselective pallada-electrocatalyzed C−H activation by transient directing groups: expedient access to helicenes. Angew. Chem. Int. Ed. 59, 13451–13457 (2020).

    CAS  Google Scholar 

  46. Li, L., Li, Y., Fu, N., Zhang, L. & Luo, S. Catalytic asymmetric electrochemical α-arylation of cyclic β-ketocarbonyls with anodic benzyne intermediates. Angew. Chem. Int. Ed. 59, 14347–14351 (2020).

    CAS  Google Scholar 

  47. Gao, P.-S. et al. CuII/TEMPO-catalyzed enantioselective C(sp3)–H alkynylation of tertiary cyclic amines through Shono-type oxidation. Angew. Chem. Int. Ed. 59, 15254–15259 (2020).

    CAS  Google Scholar 

  48. Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    CAS  PubMed  Google Scholar 

  49. Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Münchow, T. V., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).

    Google Scholar 

  51. Huang, X., Zhang, Q., Lin, J., Harms, K. & Meggers, E. Electricity-driven asymmetric Lewis acid catalysis. Nat. Catal. 2, 34–40 (2019).

    CAS  Google Scholar 

  52. Xiong, P., Hemming, M., Ivlev, S. I. & Meggers, E. Electrochemical enantioselective nucleophilic α-C(sp3)–H alkenylation of 2-acyl imidazoles. J. Am. Chem. Soc. 144, 6964–6971 (2022).

    CAS  Google Scholar 

  53. Zhang, Q., Chang, X., Peng, L. & Guo, C. Asymmetric Lewis acid catalyzed electrochemical alkylation. Angew. Chem. Int. Ed. 58, 6999–7003 (2019).

    CAS  Google Scholar 

  54. Liang, K., Zhang, Q. & Guo, C. Nickel-catalyzed switchable asymmetric electrochemical functionalization of alkenes. Sci. Adv. 8, eadd7134 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhang, Q., Liang, K. & Guo, C. Enantioselective nickel-catalyzed electrochemical radical allylation. Angew. Chem. Int. Ed. 61, e202210632 (2022).

    CAS  Google Scholar 

  56. Xiong, P. & Xu, H.-C. Chemistry with electrochemically generated N-centered radicals. Acc. Chem. Res. 52, 3339–3350 (2019).

    CAS  PubMed  Google Scholar 

  57. Rosen, B. R., Werner, E. W., O’Brien, A. G. & Baran, P. S. Total synthesis of dixiamycin B by electrochemical oxidation. J. Am. Chem. Soc. 136, 5571–5574 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Gieshoff, T., Kehl, A., Schollmeyer, D., Moeller, K. D. & Waldvogel, S. R. Insights into the mechanism of anodic N–N bond formation by dehydrogenative coupling. J. Am. Chem. Soc. 139, 12317–12324 (2017).

    CAS  PubMed  Google Scholar 

  59. Zuccarello, G., Batiste, S. M., Cho, H. & Fu, G. C. Enantioselective synthesis of α-aminoboronic acid derivatives via copper-catalyzed N-alkylation. J. Am. Chem. Soc. 145, 3330–3334 (2023).

    CAS  PubMed  Google Scholar 

  60. Chen, J.-J. et al. Enantioconvergent Cu-catalyzed N-alkylation of aliphatic amines. Nature 618, 294–300 (2023).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (grant nos. 21971227 and 22222113 to C.G.), CAS Project for Young Scientists in Basic Research (grant no. YSBR-054 to C.G.) and the Fundamental Research Funds for the Central Universities (grant nos. WK9990000090 and WK9990000111 to C.G.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.G. conceived the project. K.L. performed the experiments and analysed the data. Q.Z. synthesized some of the substrates and ligands. All authors discussed the results and prepared the manuscript.

Corresponding author

Correspondence to Chang Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Experimental details, Supplementary Figs. 1–8 and Tables 1–7.

Supplementary Data 1

Crystallographic data for compound 3s, CCDC 2234466.

Supplementary Data 2

Structure factors for compound 3s, CCDC 2234466.

Supplementary Data 3

Crystallographic data for compound 21a, CCDC 2234467.

Supplementary Data 4

Structure factors for compound 21a, CCDC 2234467.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, K., Zhang, Q. & Guo, C. Enantioselective nickel-catalysed electrochemical cross-dehydrogenative amination. Nat. Synth 2, 1184–1193 (2023). https://doi.org/10.1038/s44160-023-00372-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00372-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing