Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cobalt-catalysed allylic fluoroalkylation of terpenes

Abstract

Developing practical strategies to produce high-value chemicals, such as pharmacologically active molecules, from bulk starting materials is an ongoing challenge. One potential route to this goal is the C(sp3)–H fluoroalkylation of natural products, made possible by the unique physiological properties of fluorine-containing groups. However, protocols for such fluoroalkylation remain underdeveloped. Here we report a method for the site-selective allylic fluoroalkylation of olefins through a cobalt-catalysed process comprising halogen-atom transfer and hydrogen-atom transfer. This low-cost and operationally simple protocol is readily scalable to a 2 mol scale under mild conditions. Mechanistic studies indicate that both the cobaloxime catalyst and N,N-diisopropylethylamine are essential for producing fluoroalkyl radicals. Density functional theory calculations reveal that the observed site-selectivity is controlled by steric hindrance in the cobalt-promoted hydrogen-atom transfer step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Inspiration and design for site-selective allylic fluoroalkylation.
Fig. 2: Modular fluoroalkylation of terpenes.
Fig. 3: Synthetic applications and mechanistic studies.
Fig. 4: Exploration of site selectivity and proposed mechanism.

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS  PubMed  Google Scholar 

  2. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    CAS  PubMed  Google Scholar 

  3. Hong, B., Luo, T. & Lei, X. Late-stage diversification of natural products. ACS Cent. Sci. 6, 622–635 (2020).

    CAS  PubMed  Google Scholar 

  4. Guillemard, L., Kaplaneris, N., Ackermann, L. & Johansson, M. J. Late-stage C–H functionalization offers new opportunities in drug discovery. Nat. Rev. Chem. 5, 522–545 (2021).

    CAS  PubMed  Google Scholar 

  5. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    CAS  PubMed  Google Scholar 

  6. Newman, D. J., Cragg, G. M. & Snader, K. M. The influence of natural products upon drug discovery. Nat. Prod. Rep. 17, 215–234 (2000).

    CAS  PubMed  Google Scholar 

  7. Jordan, M. A. & Wilson, L. Microtubules as a target for anticancer drugs. Nat. Rev. Cancer 4, 253–265 (2004).

    CAS  PubMed  Google Scholar 

  8. Nobili, S. et al. Natural compounds for cancer treatment and prevention. Pharmacol. Res. 59, 365–378 (2009).

    CAS  PubMed  Google Scholar 

  9. Butler, M. S. The role of natural product chemistry in drug discovery. J. Nat. Prod. 67, 2141–2153 (2004).

    CAS  Google Scholar 

  10. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–837 (2004).

    CAS  PubMed  Google Scholar 

  11. Raut, J. S. & Karuppayil, S. M. A status review on the medicinal properties of essential oils. Ind. Crop. Prod. 62, 250–264 (2014).

    CAS  Google Scholar 

  12. Sharifi-Rad, J. et al. Biological activities of essential oils: from plant chemoecology to traditional healing systems. Molecules 22, 70 (2017).

    PubMed  PubMed Central  Google Scholar 

  13. Jansen, D. J. & Shenvi, R. A. Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. Future Med. Chem. 6, 1127–1148 (2014).

    CAS  PubMed  Google Scholar 

  14. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    PubMed  Google Scholar 

  15. Isanbor, C. & O’Hagan, D. Fluorine in medicinal chemistry: a review of anti-cancer agents. J. Fluorine Chem. 127, 303–319 (2006).

    CAS  Google Scholar 

  16. Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. Fluorine in medicinal chemistry. Chem. Soc. Rev. 37, 320–330 (2008).

    CAS  PubMed  Google Scholar 

  17. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 51, 4359–4369 (2008).

    CAS  PubMed  Google Scholar 

  18. Ni, C. & Hu, J. The unique fluorine effects in organic reactions: recent facts and insights into fluoroalkylations. Chem. Soc. Rev. 45, 5441–5454 (2016).

    CAS  PubMed  Google Scholar 

  19. Li, K. et al. Blue light induced difluoroalkylation of alkynes and alkenes. Org. Lett. 21, 9914–9918 (2019).

    CAS  PubMed  Google Scholar 

  20. Li, K. et al. Blue light promoted difluoroalkylation of aryl ketones: synthesis of quaternary alkyl difluorides and tetrasubstituted monofluoroalkenes. Org. Lett. 22, 4261–4265 (2020).

    CAS  PubMed  Google Scholar 

  21. Wang, X. et al. Copper-catalyzed C(sp3)–C(sp3) bond formation using a hypervalent iodine reagent: an efficient allylic trifluoromethylation. J. Am. Chem. Soc. 133, 16410–16413 (2011).

    CAS  PubMed  Google Scholar 

  22. Parsons, A. T. & Buchwald, S. L. Copper-catalyzed trifluoromethylation of unactivated olefins. Angew. Chem. Int. Ed. 50, 9120–9123 (2011).

    CAS  Google Scholar 

  23. Xu, J. et al. Copper-catalyzed trifluoromethylation of terminal alkenes through allylic C–H bond activation. J. Am. Chem. Soc. 133, 15300–15303 (2011).

    CAS  PubMed  Google Scholar 

  24. Chu, L. & Qing, F.-L. Copper-catalyzed oxidative trifluoromethylation of terminal alkenes using nucleophilic CF3SiMe3: efficient C(sp3)–CF3 bond formation. Org. Lett. 14, 2106–2109 (2012).

    CAS  PubMed  Google Scholar 

  25. Barthelemy, A.-L., Bourdreux, F., Dagousset, G. & Magnier, E. Photoredox-catalyzed selective synthesis of allylic perfluoroalkanes from alkenes. Chem. Eur. J. 26, 10213–10216 (2020).

    CAS  PubMed  Google Scholar 

  26. Kräutler, B. in Water Soluble Vitamins: Clinical Research and Future Application (ed. Stanger, O.) 323–346 (Springer, 2012).

  27. Schrauzer, G. N. & Deutsch, E. Reactions of cobalt(I) supernucleophiles. The alkylation of vitamin B12s, cobaloximes(I), and related compounds. J. Am. Chem. Soc. 91, 3341–3350 (1969).

    CAS  PubMed  Google Scholar 

  28. Endicott, J. F. & Netzel, T. L. Early events and transient chemistry in the photohomolysis of alkylcobalamins. J. Am. Chem. Soc. 101, 4000–4002 (1979).

    CAS  Google Scholar 

  29. Fleming, P. E., Daikh, B. E. & Finke, R. G. The coenzyme B12 derivative N1-methyl-5′-deoxyadenosylcobalamin: synthesis, characterization, stability towards Dimroth rearrangement, and Co–C thermolysis product and kinetic studies. J. Inorg. Biochem. 69, 45–57 (1998).

    CAS  PubMed  Google Scholar 

  30. Li, G., Han, A., Pulling, M. E., Estes, D. P. & Norton, J. R. Evidence for formation of a Co–H bond from (H2O)2Co(dmgBF2)2 under H2: application to radical cyclizations. J. Am. Chem. Soc. 134, 14662–14665 (2012).

    CAS  PubMed  Google Scholar 

  31. Weiss, M. E., Kreis, L. M., Lauber, A. & Carreira, E. M. Cobalt-catalyzed coupling of alkyl iodides with alkenes: deprotonation of hydridocobalt enables turnover. Angew. Chem. Int. Ed. 50, 11125–11128 (2011).

    CAS  Google Scholar 

  32. Branchaud, B. P., Meier, M. S. & Choi, Y. Alkyl–alkenyl cross coupling via alkyl cobaloxime radical chemistry. An alkyl equivalent to the Heck reaction compatible with common organic functional groups. Tetrahedron Lett. 29, 167–170 (1988).

    CAS  Google Scholar 

  33. Crossley, S. W. M., Barabé, F. & Shenvi, R. A. Simple, chemoselective, catalytic olefin isomerization. J. Am. Chem. Soc. 136, 16788–16791 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang, S. et al. Site-selective amination towards tertiary aliphatic allylamines. Nat. Catal. 5, 642–651 (2022).

    CAS  Google Scholar 

  35. Kildahl, N. K. & Viriyanon, P. Lewis acidity of cobalt(I). Inorg. Chem. 26, 4188–4194 (1987).

    CAS  Google Scholar 

  36. Becke, A. D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    CAS  Google Scholar 

  37. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    CAS  Google Scholar 

  38. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  39. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  40. Yu, H. S., He, X., Li, S. L. & Truhlar, D. G. MN15: a Kohn–Sham global-hybrid exchange–correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions. Chem. Sci. 7, 5032–5051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao, H., Pandharkar, R. & Cramer, C. J. Factors affecting the mechanism of 1,3-butadiene polymerization at open metal sites in Co-MFU-4l. Organometallics 41, 169–177 (2022).

    CAS  Google Scholar 

  42. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    CAS  PubMed  Google Scholar 

  43. Thomas, A. A. et al. Mechanistically guided design of ligands that significantly improve the efficiency of CuH-catalyzed hydroamination reactions. J. Am. Chem. Soc. 140, 13976–13984 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Constantin, T. et al. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 367, 1021–1026 (2020).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant number 2021YFA1500104, A.L.), the National Natural Science Foundation of China (grant number 22031008, A.L.), the Science Foundation of Wuhan (grant number 2020010601012192, A.L.), and the Postdoctoral Foundation of Hubei Province (grant number 211000025, S.W.). We thank M. Guo (WHU) and Q. Lu (WHU) for their suggestions, Shanghai Synchrotron Radiation Facility (SSRF) for XAFS testing, H. Yang (THU) and Y. Fan (Chinainstru & Quantumtech) for EPR testing with X-band EPR100, and Zhejiang Jiuzhou Pharmaceutical for 2 mol scale experiments. X.Q. acknowledges the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and S.W. conceived the work. S.W. and D.R. designed the experiments and analysed the data. D.R. and S.W. performed the synthetic experiments. S.W., D.Y. and Y.G. contributed to the XAFS data. S.W. and P.W. contributed to the EPR data. Z.L. and X.Q. contributed to the DFT calculation. S.W. wrote the original manuscript which all authors revised.

Corresponding author

Correspondence to Aiwen Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Baomin Fan, Yu-hong Lam, Emmanuel Magnier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Discussion, Tables 1–6 and Figs. 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ren, D., Liu, Z. et al. Cobalt-catalysed allylic fluoroalkylation of terpenes. Nat. Synth 2, 1202–1210 (2023). https://doi.org/10.1038/s44160-023-00365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00365-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing