Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical chemo- and regioselective arylalkylation, dialkylation and hydro(deutero)alkylation of 1,3-enynes

Abstract

The development of general and efficient strategies for the construction of allenes is important due to their wide applications. Although few protocols have been developed via the 1,4-difunctionalization of 1,3-enynes under thermal or photoredox conditions, the mild and robust methodology for dicarbofunctionalization and hydroalkylation remains unexplored. In the present study, we report an electrochemical multicomponent protocol for the chemo- and regioselective difunctionalization of 1,3-enynes. In particular, 1,4-arylalkylation and unsymmetrical dialkylation have been realized via electro- and nickel dual catalysis using graphite/nickel foam and zinc/nickel foam as electrodes, respectively. The use of a Zn/reticulated vitreous carbon electrode led to efficient 1,4-hydro(deutero)alkylation in the absence of a metal catalyst. A wide range of structurally diverse tri- and tetra-substituted allenes were easily prepared with good efficiency and excellent regioselectivity under mild reaction conditions. Notably, a series of natural product- and drug-derived substrates could undergo late-stage functionalization to generate the corresponding complex allenes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The development of electrochemical difunctionalization of 1,3-enynes.
Fig. 2: Synthetic applications and mechanism studies.
Fig. 3: DFT calculation and proposed mechanisms.

Similar content being viewed by others

Data availability

The authors declare that the data generated in the present study are available within the article and the Supplementary Information. The cartesian coordinates of DFT calculations are available in Supplementary Data 1.

References

  1. Krause, N. & Hashmi, A. S. Modern Allene Chemistry (Wiley-VCH, 2004).

  2. Hoffmann‐Röder, A. & Krause, N. Synthesis and properties of allenic natural products and pharmaceuticals. Angew. Chem. Int. Ed. 43, 1196–1216 (2004).

    Article  Google Scholar 

  3. Rivera‐Fuentes, P. & Diederich, F. Allenes in molecular materials. Angew. Chem. Int. Ed. 51, 2818–2828 (2012).

    Article  Google Scholar 

  4. Yu, S. & Ma, S. Allenes in catalytic asymmetric synthesis and natural product syntheses. Angew. Chem. Int. Ed. 51, 3074–3112 (2012).

    Article  CAS  Google Scholar 

  5. Reich, H. J. & Willis, W. W. Jr Organoselenium chemistry. Formation of acetylenes and allenes by syn elimination of vinyl selenoxides. J. Am. Chem. Soc. 102, 5967–5968 (1980).

    Article  CAS  Google Scholar 

  6. Liu, W. B., He, H., Dai, L. X. & You, S. L. A one‐pot palladium‐catalyzed allylic alkylation and Wittig reaction of phosphorus ylides. Chem. Eur. J. 16, 7376–7379 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Saget, T. & Cramer, N. Heteroatom‐nucleophile‐induced C-C fragmentations: synthesis of allenes and entry to domino reactions. Angew. Chem. Int. Ed. 49, 8962–8965 (2010).

    Article  CAS  Google Scholar 

  8. Liu, H., Leow, D., Huang, K.-W. & Tan, C.-H. Enantioselective synthesis of chiral allenoates by guanidine-catalyzed isomerization of 3-alkynoates. J. Am. Chem. Soc. 131, 7212–7213 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Ito, H., Sasaki, Y. & Sawamura, M. Copper (I)-catalyzed substitution of propargylic carbonates with diboron: selective synthesis of multisubstituted allenylboronates. J. Am. Chem. Soc. 130, 15774–15775 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Coeffard, V., Aylward, M. & Guiry, P. J. First regio‐ and enantioselective chromium‐catalyzed homoallenylation of aldehydes. Angew. Chem. Int. Ed. 48, 9152–9155 (2009).

    Article  CAS  Google Scholar 

  11. Lee, P. H., Lee, K. & Kang, Y. In situ generation of vinyl allenes and its applications to one-pot assembly of cyclohexene, cyclooctadiene, 3,7-nonadienone, and bicyclo[6.4.0]dodecene derivatives with palladium-catalyzed multicomponent reactions. J. Am. Chem. Soc. 128, 1139–1146 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Tietze, L. F. & Modi, A. Multicomponent domino reactions for the synthesis of biologically active natural products and drugs. Med. Res. Rev. 20, 304–322 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Masson, G., Neuville, L., Bughin, C., Fayol, A. & Zhu, J. in Synthesis of Heterocycles via Multicomponent Reactions II (eds Orru, R. V. A. & Ruijter, E.) 1–24 (Springer, 2010).

  14. Domling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, J., Wang, Q. & Wang, M. Multicomponent Reactions in Organic Synthesis (John Wiley & Sons, 2014).

  16. Levi, L. & Müller, T. J. Multicomponent syntheses of functional chromophores. Chem. Soc. Rev. 45, 2825–2846 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Apolinar, O. et al. Three-component asymmetric Ni-catalyzed 1,2-dicarbofunctionalization of unactivated alkenes via stereoselective migratory insertion. J. Am. Chem. Soc. 144, 19337–19343 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Tran, V. T. et al. Integrating allyl electrophiles into nickel‐catalyzed conjunctive cross‐coupling. Angew. Chem. Int. Ed. 59, 7029–7034 (2020).

    Article  CAS  Google Scholar 

  19. Aryal, V. et al. Ni-catalyzed regio-and stereoselective alkylarylation of unactivated alkenes in γ,δ-alkenylketimines. ACS Catal. 12, 7262–7268 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dhungana, R. K. et al. Ni‐catalyzed arylbenzylation of alkenylarenes: kinetic studies reveal autocatalysis by ZnX2. Angew. Chem. Int. Ed. 60, 22977–22982 (2021).

    Article  CAS  Google Scholar 

  21. Campbell, M. W., Yuan, M., Polites, V. C., Gutierrez, O. & Molander, G. A. Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 143, 3901–3910 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang, W., Keess, S. & Molander, G. A. Dicarbofunctionalization of [1.1.1]propellane enabled by nickel/photoredox dual catalysis: one-step multicomponent strategy for the synthesis of BCP-aryl derivatives. J. Am. Chem. Soc. 144, 12961–12969 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Huang, W., Keess, S. & Molander, G. A. One step synthesis of unsymmetrical 1,3-disubstituted BCP ketones via nickel/photoredox-catalyzed [1.1.1]propellane multicomponent dicarbofunctionalization. Chem. Sci. 13, 11936–11942 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Long, T. et al. Ligand-controlled stereodivergent alkenylation of alkynes to access functionalized trans- and cis-1,3-dienes. Nat. Commun. 14, 55 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, X. et al. Three-component enantioselective alkenylation of organophosphonates via nickel metallaphotoredox catalysis. Chem 9, 154–169 (2023).

    Article  CAS  Google Scholar 

  26. Zhu, C., Yue, H. & Rueping, M. Nickel catalyzed multicomponent stereodivergent synthesis of olefins enabled by electrochemistry, photocatalysis and photo-electrochemistry. Nat. Commun. 13, 3240 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yue, H., Zhu, C., Kancherla, R., Liu, F. & Rueping, M. Regioselective hydroalkylation and arylalkylation of alkynes by photoredox/nickel dual catalysis: application and mechanism. Angew. Chem. Int. Ed. 59, 5738–5746 (2020).

    Article  CAS  Google Scholar 

  28. Zhu, C. et al. A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer. Nat. Catal. 2, 678–687 (2019).

    Article  CAS  Google Scholar 

  29. Chen, Y., Zhu, K., Huang, Q. & Lu, Y. Regiodivergent sulfonylarylation of 1,3-enynes via nickel/photoredox dual catalysis. Chem. Sci. 12, 13564–13571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, L., Ma, R., Sun, J., Zheng, G. & Zhang, Q. NHC and visible light-mediated photoredox co-catalyzed 1,4-sulfonylacylation of 1,3-enynes for tetrasubstituted allenyl ketones. Chem. Sci. 13, 3169–3175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song, Y., Fu, C. & Ma, S. Copper-catalyzed syntheses of multiple functionalizatized allenes via three-component reaction of enynes. ACS Catal. 11, 10007–10013 (2021).

    Article  CAS  Google Scholar 

  32. Chen, Y., Wang, J. & Lu, Y. Decarboxylative 1,4-carbocyanation of 1,3-enynes to access tetra-substituted allenes via copper/photoredox dual catalysis. Chem. Sci. 12, 11316–11321 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu, X. et al. Copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes with alkyl diacyl peroxides and N-fluorobenzenesulfonimide. J. Am. Chem. Soc. 141, 548–559 (2018).

    Article  PubMed  Google Scholar 

  34. Zeng, Y. et al. Copper-catalyzed enantioselective radical 1,4-difunctionalization of 1,3-enynes. J. Am. Chem. Soc. 142, 18014–18021 (2020).

    Article  CAS  PubMed  Google Scholar 

  35. Dong, X. Y. et al. Copper‐catalyzed asymmetric coupling of allenyl radicals with terminal alkynes to access tetrasubstituted allenes. Angew. Chem. Int. Ed. 60, 2160–2164 (2021).

    Article  CAS  Google Scholar 

  36. Wang, F. et al. Divergent synthesis of CF3‐substituted allenyl nitriles by ligand‐controlled radical 1,2‐ and 1,4‐addition to 1,3‐enynes. Angew. Chem. Int. Ed. 57, 7140–7145 (2018).

    Article  CAS  Google Scholar 

  37. Terao, J., Bando, F. & Kambe, N. Ni-catalyzed regioselective three-component coupling of alkyl halides, arylalkynes, or enynes with R–M (M = MgX′, ZnX′). Chem. Commun. 47, 7336–7338 (2009).

  38. Zhang, K. F. et al. Nickel‐catalyzed carbofluoroalkylation of 1,3‐enynes to access structurally diverse fluoroalkylated allenes. Angew. Chem. Int. Ed. 58, 5069–5074 (2019).

    Article  CAS  Google Scholar 

  39. Ye, C. et al. Copper-catalyzed 1,4-alkylarylation of 1,3-enynes with masked alkyl electrophiles. Chem. Sci. 10, 3632–3636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ohira, Y., Mori, T., Hayashi, M., Onodera, G. & Kimura, M. Three-component coupling reaction of enynes, carbonyls, and organozinc reagents. Heterocycles 90, 832–841 (2015).

    Article  CAS  Google Scholar 

  41. Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Everson, D. A. & Weix, D. J. Cross-electrophile coupling: principles of reactivity and selectivity. J. Org. Chem. 79, 4793–4798 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weix, D. J. Methods and mechanisms for cross-electrophile coupling of Csp2 halides with alkyl electrophiles. Acc. Chem. Res. 48, 1767–1775 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu, J., Wang, X., Xue, W. & Gong, H. Nickel-catalyzed reductive coupling of alkyl halides with other electrophiles: concept and mechanistic considerations. Org. Chem. Front. 2, 1411–1421 (2015).

    Article  CAS  Google Scholar 

  45. Liu, J., Ye, Y., Sessler, J. L. & Gong, H. Cross-electrophile couplings of activated and sterically hindered halides and alcohol derivatives. Acc. Chem. Res. 53, 1833–1845 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Xue, W. et al. Nickel-catalyzed formation of quaternary carbon centers using tertiary alkyl electrophiles. Chem. Soc. Rev. 50, 4162–4184 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, J., Lu, L., Wood, D. & Lin, S. New redox strategies in organic synthesis by means of electrochemistry and photochemistry. ACS Cent. Sci. 6, 1317–1340 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gandeepan, P., Finger, L. H., Meyer, T. H. & Ackermann, L. 3D metallaelectrocatalysis for resource economical syntheses. Chem. Soc. Rev. 49, 4254–4272 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Ackermann, L. Metalla-electrocatalyzed C–H activation by earth-abundant 3d metals and beyond. Acc. Chem. Res. 53, 84–104 (2019).

    Article  PubMed  Google Scholar 

  50. Badalyan, A. & Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535, 406–410 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Gao, X., Wang, P., Zeng, L., Tang, S. & Lei, A. Cobalt(II)-catalyzed electrooxidative C–H amination of arenes with alkylamines. J. Am. Chem. Soc. 140, 4195–4199 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, B. et al. Ni-electrocatalytic Csp3–Csp3 doubly decarboxylative coupling. Nature 606, 313–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang, W. et al. Electrochemically driven cross-electrophile coupling of alkyl halides. Nature 604, 292–297 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hamby, T. B., LaLama, M. J. & Sevov, C. S. Controlling Ni redox states by dynamic ligand exchange for electroreductive Csp3–Csp2 coupling. Science 376, 410–416 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu, L., Siu, J. C., Lai, Y. & Lin, S. An electroreductive approach to radical silylation via the activation of strong Si–Cl bond. J. Am. Chem. Soc. 142, 21272–21278 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, W. & Lin, S. Electroreductive carbofunctionalization of alkenes with alkyl bromides via a radical-polar crossover mechanism. J. Am. Chem. Soc. 142, 20661–20670 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fu, N. et al. New bisoxazoline ligands enable enantioselective electrocatalytic cyanofunctionalization of vinylarenes. J. Am. Chem. Soc. 141, 14480–14485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Siu, J. C. et al. Electrochemical azidooxygenation of alkenes mediated by a Tempo–N3 charge-transfer complex. J. Am. Chem. Soc. 140, 12511–12520 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu, N., Sauer, G. S., Saha, A., Loo, A. & Lin, S. Metal-catalyzed electrochemical diazidation of alkenes. Science 357, 575–579 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Till, N. A., Oh, S., MacMillan, D. W. & Bird, M. J. The application of pulse radiolysis to the study of Ni(I) intermediates in Ni-catalyzed cross-coupling reactions. J. Am. Chem. Soc. 143, 9332–9337 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Ting, S. I., Williams, W. L. & Doyle, A. G. Oxidative addition of aryl halides to a Ni(I)-bipyridine complex. J. Am. Chem. Soc. 144, 5575–5582 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Lin, Q. & Diao, T. Mechanism of Ni-catalyzed reductive 1,2-dicarbofunctionalization of alkenes. J. Am. Chem. Soc. 141, 17937–17948 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Diccianni, J., Lin, Q. & Diao, T. Mechanisms of nickel-catalyzed coupling reactions and applications in alkene functionalization. Acc. Chem. Res. 53, 906–919 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin, Q., Fu, Y., Liu, P. & Diao, T. Monovalent nickel-mediated radical formation: a concerted halogen-atom dissociation pathway determined by electroanalytical studies. J. Am. Chem. Soc. 143, 14196–14206 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chen, H., Yue, H., Zhu, C. & Rueping, M. Reactivity in nickel‐catalyzed multi‐component sequential reductive cross‐coupling reactions. Angew. Chem. Int. Ed. 61, e202204144 (2022).

    Article  CAS  Google Scholar 

  66. Maity, B. et al. Mechanistic insight into the photoredox-nickel-HAT triple catalyzed arylation and alkylation of α-amino Csp3–H bonds. J. Am. Chem. Soc. 142, 16942–16952 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the King Abdullah University of Science and Technology (KAUST) and the Saudi Arabia, Office of Sponsored Research (URF/1/4025). C.Z. acknowledges the KAUST Supercomputing Laboratory for providing computational resources from the supercomputer Shaheen II (k1284).

Author information

Authors and Affiliations

Authors

Contributions

C.Z., H.Y. and M.R. conceived and designed the project. C.Z., H.C. and H.Y. optimized the reaction conditions. H.C. performed and analysed the experiments. C.Z. and H.C. performed the experimental mechanistic studies. C.Z. performed the theoretical calculations. C.Z., H.Y. and M.R. co-wrote the manuscript. M.R. directed the whole research.

Corresponding authors

Correspondence to Huifeng Yue or Magnus Rueping.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary sections 1–10, including experimental details, Figs. 1–6 and Tables 1 and 2.

Supplementary Data 1

The cartesian coordinates of DFT calculations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Chen, H., Yue, H. et al. Electrochemical chemo- and regioselective arylalkylation, dialkylation and hydro(deutero)alkylation of 1,3-enynes. Nat. Synth 2, 1068–1081 (2023). https://doi.org/10.1038/s44160-023-00349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00349-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing