Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst

Abstract

Although visible-light-driven dual photoredox catalysis, a method that combines photoabsorbers and transition metals, has become a powerful tool to conduct coupling reactions, resource economical and scalability issues persist, owing to the use of catalysts and light absorbers that exploit critical raw materials (such as iridium complexes), and are homogeneous in nature. Here we report the merger of metallic single-atom and photoredox catalysis, in the form of a Ni atom-supported carbon nitride material, for the C–O coupling of carboxylic acids and alkyl halides. This operationally straightforward system, composed of only earth-abundant components, exhibits a wide functional group tolerance. Additionally, short reaction times, facile recovery and high catalyst stability make this method highly attractive for industrial applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Established and current catalytic work on the formation of C–O cross-coupled products.
Fig. 2: Catalyst characterization.
Fig. 3: Metallaphotocatalytic optimization, recyclability tests and system comparison studies.
Fig. 4: DFT-calculated metallaphotocatalytic C–O coupling cycle.

Similar content being viewed by others

Data availability

All the data supporting the findings of this study are available within the article and its supplementary information and also from the corresponding authors upon reasonable request.

References

  1. Boström, J., Brown, D. G., Young, R. J. & Keserü, G. M. Expanding the medicinal chemistry synthetic toolbox. Nat. Rev. Drug Discov. 17, 709–727 (2018).

    Article  PubMed  Google Scholar 

  2. Crisenza, G. E. M., Faraone, A., Gandolfo, E., Mazzarella, D. & Melchiorre, P. Catalytic asymmetric C–C cross-couplings enabled by photoexcitation. Nat. Chem. 13, 575–580 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. Hie, L. et al. Nickel-catalyzed esterification of aliphatic amides. Angew. Chem. Int. Ed. 55, 15129–15132 (2016).

    Article  CAS  Google Scholar 

  4. Bourne-Branchu, Y., Gosmini, C. & Danoun, G. Cobalt-catalyzed esterification of amides. Chem. Eur. J. 23, 10043–10047 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Wang, F. et al. Copper-catalyzed direct acyloxylation of C(sp2)-H bonds in aromatic amides. Org. Lett. 19, 3636–3639 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Ueno, R., Natsui, S. & Chatani, N. Cobalt(II)-catalyzed acyloxylation of C–H bonds in aromatic amides with carboxylic acids. Org. Lett. 20, 1062–1065 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Lin, C., Chen, Z., Liu, Z. & Zhang, Y. Direct ortho-acyloxylation of arenes and alkenes by cobalt catalysis. Adv. Synth. Catal. 360, 519–532 (2018).

    Article  CAS  Google Scholar 

  8. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  9. Chan, A. Y. et al. Metallaphotoredox: the merger of photoredox and transition metal catalysis. Chem. Rev. 122, 1485–1542 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Pandey, G., Koley, S., Talukdar, R. & Sahani, P. K. Cross-dehydrogenating coupling of aldehydes with amines/R-OTBS ethers by visible-light photoredox catalysis: synthesis of amides, esters, and ureas. Org. Lett. 20, 5861–5865 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(II). Science 355, 380–385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu, J. et al. Donor–acceptor fluorophores for energy-transfer-mediated photocatalysis. J. Am. Chem. Soc. 140, 13719–13725 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Pieber, B. et al. Semi-heterogeneous dual nickel/photocatalysis using carbon nitrides: esterification of carboxylic acids with aryl halides. Angew. Chem. Int. Ed. 58, 9575–9580 (2019).

    Article  CAS  Google Scholar 

  14. Zu, W., Day, C., Wei, L., Jia, X. & Xu, L. Dual aminoquinolate diarylboron and nickel catalysed metallaphotoredox platform for carbon-oxygen bond construction. Chem. Commun. 56, 8273–8276 (2020).

    Article  CAS  Google Scholar 

  15. Reischauer, S., Strauss, V. & Pieber, B. Modular, self-assembling metallaphotocatalyst for cross-couplings using the full visible-light spectrum. ACS Catal. 10, 13269–13274 (2020).

    Article  CAS  Google Scholar 

  16. Cavedon, C. et al. Intraligand charge transfer enables visible‐light‐mediated nickel‐catalyzed cross‐coupling reactions. Angew. Chem. Int. Ed. 61, e202211433 (2022).

    Article  CAS  Google Scholar 

  17. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Crisenza, G. E. M. & Melchiorre, P. Chemistry glows green with photoredox catalysis. Nat. Commun. 11, 803 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ackerman, L. K. G., Martinez Alvarado, J. I. & Doyle, A. G. Direct C–C bond formation from alkanes using Ni-photoredox catalysis. J. Am. Chem. Soc. 140, 14059–14063 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schwarz, J. L., Schäfers, F., Tlahuext-Aca, A., Lückemeier, L. & Glorius, F. Diastereoselective allylation of aldehydes by dual photoredox and chromium catalysis. J. Am. Chem. Soc. 140, 12705–12709 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Vilé, G., Richard-Bildstein, S., Lhuillery, A. & Rueedi, G. Electrophile, substrate functionality, and catalyst effects in the synthesis of α-mono and di-substituted benzylamines via visible-light photoredox catalysis in flow. ChemCatChem 10, 3786–3794 (2018).

    Article  Google Scholar 

  22. Korvorapun, K. et al. Photo-induced ruthenium-catalyzed C−H arylations at ambient temperature. Angew. Chem. Int. Ed. 59, 18103–18109 (2020).

    Article  CAS  Google Scholar 

  23. Alandini, N. et al. Amide synthesis by nickel/photoredox-catalyzed direct carbamoylation of (hetero)aryl bromides. Angew. Chem. Int. Ed. 59, 5248–5253 (2020).

    Article  CAS  Google Scholar 

  24. Wang, S., Wang, H. & König, B. Light-induced single-electron transfer processes involving sulfur anions as catalysts. J. Am. Chem. Soc. 143, 15530–15537 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, H., Caldora, H. P., Turner, O., Douglas, J. J. & Leonori, D. A desaturative approach for aromatic aldehyde synthesis via synergistic enamine, photoredox and cobalt triple catalysis. Angew. Chem. Int. Ed. 61, e202201870 (2022).

    Article  CAS  Google Scholar 

  26. Kümmerer, K., Clark, J. H. & Zuin, V. G. Rethinking chemistry for a circular economy. Science 367, 369–370 (2020).

    Article  PubMed  Google Scholar 

  27. Wang, X., Cuny, G. D. & Noël, T. A mild, one-pot stadler-ziegler synthesis of arylsulfides facilitated by photoredox catalysis in batch and continuous-flow. Angew. Chem. Int. Ed. 52, 7860–7864 (2013).

    Article  CAS  Google Scholar 

  28. Knorn, M., Rawner, T., Czerwieniec, R. & Reiser, O. [Copper(phenanthroline)(bisisonitrile)]+-complexes for the visible-light-mediated atom transfer radical addition and allylation reactions. ACS Catal. 5, 5186–5193 (2015).

    Article  CAS  Google Scholar 

  29. Khamrai, J., Ghosh, I., Savateev, A., Antonietti, M. & König, B. Photo-Ni-dual-catalytic C(sp2)-C(sp3) cross-coupling reactions with mesoporous graphitic carbon nitride as a heterogeneous organic semiconductor photocatalyst. ACS Catal. 10, 3526–3532 (2020).

    Article  CAS  Google Scholar 

  30. Zhao, X. et al. Nickel-coordinated carbon nitride as a metallaphotoredox platform for the cross-coupling of aryl halides with alcohols. ACS Catal. 10, 15178–15185 (2020).

    Article  CAS  Google Scholar 

  31. Vijeta, A., Casadevall, C., Roy, S. & Reisner, E. Visible‐light promoted C–O bond formation with an integrated carbon nitride–nickel heterogeneous photocatalyst. Angew. Chem. Int. Ed. 60, 8494–8499 (2021).

    Article  CAS  Google Scholar 

  32. Das, S. et al. Photocatalytic (het)arylation of C(sp3)-H bonds with carbon nitride. ACS Catal. 11, 1593–1603 (2021).

    Article  CAS  Google Scholar 

  33. Bajada, M. A. et al. Interfacing single-atom catalysis with continuous-flow organic electrosynthesis. Chem. Soc. Rev. 51, 3898–3925 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Vilé, G. et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).

    Article  Google Scholar 

  35. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, J. et al. Highly-dispersed zinc species on zeolites for the continuous and selective dehydrogenation of ethane with CO2 as a soft oxidant. ACS Catal. 11, 2819–2830 (2021).

    Article  CAS  Google Scholar 

  37. Vilé, G. et al. Azide-alkyne click chemistry over a heterogeneous copper-based single-atom catalyst. ACS Catal. 12, 2947–2958 (2022).

    Article  Google Scholar 

  38. Gawande, M. B., Fornasiero, P. & Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 10, 2231–2259 (2020).

    Article  CAS  Google Scholar 

  39. Hannagan, R. T. et al. Combining STM, RAIRS and TPD to decipher the dispersion and interactions between active sites in RhCu single-atom alloys. ChemCatChem 12, 488–493 (2020).

    Article  CAS  Google Scholar 

  40. Li, X. et al. Cobalt single-atom catalysts with high stability for selective dehydrogenation of formic acid. Angew. Chem. Int. Ed. 59, 15849–15854 (2020).

    Article  CAS  Google Scholar 

  41. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    Article  CAS  Google Scholar 

  42. DeRita, L. et al. Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nat. Mater. 18, 746–751 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Navarro, J. J. et al. Growth of N‐heterocyclic carbene assemblies on Cu(100) and Cu(111): from single molecules to magic‐number islands. Angew. Chem. Int. Ed. 61, e202202127 (2022).

    Article  CAS  Google Scholar 

  44. Zhang, H., Lu, X. F., Wu, Z. P. & Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 6, 1288–1301 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xia, B., Zhang, Y., Ran, J., Jaroniec, M. & Qiao, S. Z. Single-atom photocatalysts for emerging reactions. ACS Cent. Sci. 7, 39–54 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cao, Y. et al. Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew. Chem. Int. Ed. 56, 12191–12196 (2017).

    Article  CAS  Google Scholar 

  47. Li, J. et al. Single-atom Pt-N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 10, 2431–2442 (2020).

    Article  CAS  Google Scholar 

  48. Zhang, H. et al. Efficient visible-light-driven carbon dioxide reduction by a single-atom implanted metal–organic framework. Angew. Chem. Int. Ed. 55, 14310–14314 (2016).

    Article  CAS  Google Scholar 

  49. Zheng, Y. W. et al. Photocatalytic hydrogen-evolution cross-couplings: benzene C–H amination and hydroxylation. J. Am. Chem. Soc. 138, 10080–10083 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Zhang, N. et al. Oxide defect engineering enables to couple solar energy into oxygen activation. J. Am. Chem. Soc. 138, 8928–8935 (2016).

    Article  CAS  PubMed  Google Scholar 

  51. Wen, J. et al. Biomimetic photocatalytic sulfonation of alkenes to access β-ketosulfones with single-atom iron site. Green Chem. 22, 230–237 (2020).

    Article  CAS  Google Scholar 

  52. Vijeta, A., Casadevall, C. & Reisner, E. An integrated carbon nitride‐nickel photocatalyst for the amination of aryl halides using sodium azide. Angew. Chem. Int. Ed. 61, e2022031 (2022).

    Article  Google Scholar 

  53. Kwak, M. et al. Ni single atoms on carbon nitride for visible-light-promoted full heterogeneous dual catalysis. Chem. Sci. 13, 8536–8542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, Z. et al. Engineering single-atom active sites anchored covalent organic frameworks for efficient metallaphotoredox C–N cross-coupling reactions. Sci. Bull. 67, 1971–1981 (2022).

    Article  CAS  Google Scholar 

  55. Li, Z. et al. Integrated nickel/polymer dual catalytic system for visible-light-driven sulfonamidation between aryl halides and aryl sulfonamides. Chem Catal. 2, 3546–3558 (2022).

    Article  CAS  Google Scholar 

  56. Vilé, G. et al. An earth‐abundant Ni‐based single‐atom catalyst for selective photodegradation of pollutants. Sol. RRL 5, 2100176 (2021).

    Article  Google Scholar 

  57. Fina, F., Callear, S. K., Carins, G. M. & Irvine, J. T. S. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 27, 2612–2618 (2015).

    Article  CAS  Google Scholar 

  58. Chen, J. et al. Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32, e2003134 (2020).

    Article  PubMed  Google Scholar 

  59. Yang, H. et al. Carbon dioxide electroreduction on single-atom nickel decorated carbon membranes with industry compatible current densities. Nat. Commun. 11, 593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jiang, K. et al. Isolated Ni single atoms in graphene nanosheets for high-performance CO2 reduction. Energy Environ. Sci. 11, 893–903 (2018).

    Article  CAS  Google Scholar 

  61. Zheng, T. et al. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst. Joule 3, 265–278 (2019).

    Article  CAS  Google Scholar 

  62. Mino, L. et al. Low-dimensional systems investigated by x-ray absorption spectroscopy: a selection of 2D, 1D and 0D cases. J. Phys. D 46, 423001 (2013).

    Article  Google Scholar 

  63. Mansour, A. N. & Melendres, C. A. Analysis of X-ray absorption spectra of some nickel oxycompounds using theoretical standards. J. Phys. Chem. A 102, 65–81 (1998).

    Article  CAS  Google Scholar 

  64. Mino, L. et al. EXAFS and XANES investigation of (Li, Ni) codoped ZnO thin films grown by pulsed laser deposition. J. Phys. Condens. Matter 25, 385402 (2013).

    Article  PubMed  Google Scholar 

  65. Yang, H. et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    Article  CAS  Google Scholar 

  66. Di Liberto, G., Cipriano, L. A. & Pacchioni, G. Universal principles for the rational design of single atom electrocatalysts? Handle with care. ACS Catal. 12, 5846–5856 (2022).

    Article  Google Scholar 

  67. Johnston, C. P., Smith, R. T., Allmendinger, S. & MacMillan, D. W. C. Metallaphotoredox-catalysed sp3sp3 cross-coupling of carboxylic acids with alkyl halides. Nature 536, 322–325 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Stepanian, S. G., Reva, I. D., Radchenko, E. D. & Adamowicz, L. Conformers of nonionized proline. Matrix-isolation infrared and post-Hartree–Fock ab initio study. J. Phys. Chem. A 105, 10664–10672 (2001).

    Article  CAS  Google Scholar 

  69. Mary, Y. S., Ushakumari, L., Harikumar, B., Varghese, H. T. & Panicker, C. Y. FT-IR, FT-Raman and SERS spectra of l-proline. J. Iran. Chem. Soc. 6, 138–144 (2009).

    Article  CAS  Google Scholar 

  70. Reeves, E. K., Entz, E. D. & Neufeldt, S. R. Chemodivergence between electrophiles in cross-coupling reactions. Chemistry 27, 6161–6177 (2021).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission through a Marie Skłodowska-Curie Fellowship (101031710, M.A.B.) and Horizon Europe fund for societal challenges (101057430, G.V.), by the Italian Ministry of Education, University and Research (MIUR) through the PRIN Project 20179337R7 (G.D.L., S.T. and G.P.), and by the COST (European Cooperation in Science and Technology) Action 18234 (G.D.L., S.T. and G.P.). E. Vittorio Pasini, P. Piscioneri and C. Basano, from Politecnico di Milano, are greatly thanked for help during catalytic experiments. The authors acknowledge S. Agnoli from the University of Padua (XPS studies), G. Divitini from the Italian Institute of Technology (HRTEM analyses) and J. Liu at the Dalian University of Technology for their respective input on the paper. L.M. thanks E. Borfecchia from Università di Torino for useful discussion about the XAS data.

Author information

Authors and Affiliations

Authors

Contributions

G.V. and M.A.B. conceived the project and devised the experiments. M.A.B. synthesized and characterized the catalysts. M.A.B. and V.R. conducted the metallaphotocatalytic tests and analysed the data, with assistance from A.S. V.R. purified, isolated, and characterized all compounds in the substrate scope. G.D.L., S.T., and G.P. performed DFT calculations. L.M. assisted during analysis of the X-ray spectra, while N.A. and L.M. conducted IR experiments and analysed the data. M.A.B. and G.V. wrote the paper with contributions and discussions from all co-authors.

Corresponding authors

Correspondence to Sergio Tosoni or Gianvito Vilé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Materials and methods and experimental details, Table 1 and Figs. 1–9.

Source data

Source Data Fig. 2

XANES and EXAFS data used to compile the spectra portrayed in Fig. 2a,b.

Source Data Fig. 3

Processed catalytic data for system optimization, recyclability test and alternative catalyst screening.

Source Data Fig. 4

Zip folder enclosing a .txt file reporting the relative energies of all structures displayed in the reaction cycle and .cif files for all the computed structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajada, M.A., Di Liberto, G., Tosoni, S. et al. Light-driven C–O coupling of carboxylic acids and alkyl halides over a Ni single-atom catalyst. Nat. Synth 2, 1092–1103 (2023). https://doi.org/10.1038/s44160-023-00341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00341-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing