Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precision synthesis of a CdSe semiconductor nanocluster via cation exchange

Abstract

Precision nanosynthesis is essential for atomic engineering in nanostructures and for mechanistic understanding of nanoscale reactions. However, emergent complexity in nanostructures and nanosynthesis makes precision synthesis challenging. Here, we report the precision synthesis of a semiconductor nanocluster via synergizing coordination, cluster and colloidal chemistry at the nanoscale. By using a Cu26Se13(PEt2Ph)14 cluster and a CdI2(PPr3)2 coordination complex as precise precursors in a colloidal cation-exchange reaction, an atomically precise Cd26Se17I18(PPr3)10 (CdSe) cluster is produced at near-unity yield. X-ray crystallography reveals that the child CdSe cluster inherits its icosahedral-packed anion lattice and halide-phosphine-rich surface from the parent cluster and complex, respectively. The hybridization of achiral precursors leads to chiral CdSe clusters cocrystallized as a 1:1 mixture of enantiomers. In situ optical spectroscopy is used to map the precise reaction pathways. On the basis of charge and coordination conservations, the atomic structure of the CdSe cluster can be linked to its synthetic precursors via a series of transformations including surface coordination exchange, intracluster reorganization and intercluster digestive ripening. The precision nanosynthesis described here, with atomically defined precursors, pathways and products, is expected to further facilitate the atomic engineering of functional nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cation-exchange reactions across the length scale.
Fig. 2: Precise precursors for cation-exchange reaction and corresponding characterization of precursor and product clusters.
Fig. 3: Cd26Se17I18(PPr3)10 as the precise product of cation exchange.
Fig. 4: Transformation pathways of cation-exchange reaction.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary information. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2221498 for CdI2(PPr3)2, 2221499 for Cd26Se17I18(PPr3)10 and 2221500 for Cu26Se13(PEt2Ph)14. Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2021).

    CAS  PubMed  Google Scholar 

  2. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, 885–892 (2016).

    CAS  Google Scholar 

  3. Murray, C. B., Norris, D. J. & Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993).

    CAS  Google Scholar 

  4. Peng, Z. A. & Peng, X. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001).

    CAS  PubMed  Google Scholar 

  5. Efros, A. L. & Brus, L. E. Nanocrystal quantum dots: from discovery to modern development. ACS Nano 15, 6192–6210 (2021).

    CAS  PubMed  Google Scholar 

  6. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 141–153 (2016).

    CAS  PubMed  Google Scholar 

  7. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    CAS  PubMed  Google Scholar 

  8. Yu, W. W., Qu, L., Guo, W. & Peng, X. Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15, 2854–2860 (2003).

    CAS  Google Scholar 

  9. Jin, R., Zeng, C., Zhou, M. & Chen, Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).

    CAS  PubMed  Google Scholar 

  10. Zeng, C., Chen, Y., Kirschbaum, K., Lambright, K. J. & Jin, R. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354, 1580–1584 (2016).

    CAS  PubMed  Google Scholar 

  11. Tran, N. T., Powell, D. R. & Dahl, L. F. Nanosized Pd145(CO)x(PEt3)30 containing a capped three-shell 145-atom metal-core geometry of pseudo icosahedral symmetry. Angew. Chem. Int. Ed. 39, 4121–4125 (2000).

    CAS  Google Scholar 

  12. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    CAS  PubMed  Google Scholar 

  13. García-Rodríguez, R., Hendricks, M. P., Cossairt, B. M., Liu, H. & Owen, J. S. Conversion reactions of cadmium chalcogenide nanocrystal precursors. Chem. Mater. 25, 1233–1249 (2013).

    Google Scholar 

  14. Owen, J. The coordination chemistry of nanocrystal surfaces. Science 347, 615–616 (2015).

    CAS  PubMed  Google Scholar 

  15. Jasieniak, J. & Mulvaney, P. From Cd-rich to Se-rich—the manipulation of CdSe nanocrystal surface stoichiometry. J. Am. Chem. Soc. 129, 2841–2848 (2007).

    CAS  PubMed  Google Scholar 

  16. Wei, H. H.-Y. et al. Colloidal semiconductor quantum dots with tunable surface composition. Nano Lett. 12, 4465–4471 (2012).

    CAS  PubMed  Google Scholar 

  17. Williamson, C. B. et al. Chemically reversible isomerization of inorganic clusters. Science 363, 731–735 (2019).

    CAS  PubMed  Google Scholar 

  18. Lee, G. S. H. et al. [S4Cd17(SPh)28]2−, the first member of a third series of tetrahedral [SWMX(SR)y]z− clusters. J. Am. Chem. Soc. 110, 4863–4864 (1988).

  19. Herron, N., Calabrese, J. C., Farneth, W. E. & Wang, Y. Crystal structure and optical properties of Cd32S14(SC6H5)36. DMF4, a cluster with a 15 angstrom CdS core. Science 259, 1426–1428 (1993).

    CAS  PubMed  Google Scholar 

  20. Vossmeyer, T., Reck, G., Schulz, B., Katsikas, L. & Weller, H. Double-layer superlattice structure built up of Cd32S14(SCH2CH(OH)CH3)36.4H2O clusters. J. Am. Chem. Soc. 117, 12881–12882 (1995).

    CAS  Google Scholar 

  21. Soloviev, V. N., Eichhöfer, A., Fenske, D. & Banin, U. Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. J. Am. Chem. Soc. 123, 2354–2364 (2001).

    CAS  PubMed  Google Scholar 

  22. Beecher, A. N. et al. Atomic structures and gram scale synthesis of three tetrahedral quantum dots. J. Am. Chem. Soc. 136, 10645–10653 (2014).

    CAS  PubMed  Google Scholar 

  23. Gary, D. C. et al. Single-crystal and electronic structure of a 1.3 nm indium phosphide nanocluster. J. Am. Chem. Soc. 138, 1510–1513 (2016).

    CAS  PubMed  Google Scholar 

  24. Zeng, C. Precision at the nanoscale: on the structure and property evolution of gold nanoclusters. Pure Appl. Chem. 90, 1409–1428 (2018).

    CAS  Google Scholar 

  25. Anderson, P. W. More is different. Science 177, 393–396 (1972).

    CAS  PubMed  Google Scholar 

  26. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature 437, 664–670 (2005).

    CAS  PubMed  Google Scholar 

  27. Silvera Batista, C. A., Larson, R. G. & Kotov, N. A. Nonadditivity of nanoparticle interactions. Science 350, 6257 (2015).

    Google Scholar 

  28. de Trizio, L. & Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116, 10852–10887 (2016).

    PubMed  PubMed Central  Google Scholar 

  29. Rivest, J. B. & Jain, P. K. Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42, 89–96 (2013).

    CAS  PubMed  Google Scholar 

  30. Beberwyck, B. J., Surendranath, Y. & Alivisatos, A. P. Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117, 19759–19770 (2013).

    CAS  Google Scholar 

  31. Gupta, S., Kershaw, S. V. & Rogach, A. L. 25th Anniversary article: ion exchange in colloidal nanocrystals. Adv. Mater. 25, 6923–6944 (2013).

    CAS  PubMed  Google Scholar 

  32. Zeng, C., Chen, Y., Das, A. & Jin, R. Transformation chemistry of gold nanoclusters: from one stable size to another. J. Phys. Chem. Lett. 6, 2976–2986 (2015).

    CAS  PubMed  Google Scholar 

  33. Zeng, C., Liu, C., Pei, Y. & Jin, R. Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7, 6138–6145 (2013).

  34. Singer, J. & Faeth, P. A. The orientation of Cu2S formed on single crystal CdS. App. Phys. Lett. 11, 130–132 (1967).

    CAS  Google Scholar 

  35. Cook, W. R., Shiozawa, L. & Augustine, F. Relationship of copper sulfide and cadmium sulfide phases. J. Appl. Phys. 41, 3058–3063 (1970).

    CAS  Google Scholar 

  36. Szeto, W. & Somorjai, G. A. Optical study of copper diffusion in cadmium sulfide single crystals. J. Chem. Phys. 44, 3490–3495 (1966).

    CAS  Google Scholar 

  37. Son, D. H., Hughes, S. M., Yin, Y. & Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004).

    CAS  PubMed  Google Scholar 

  38. Mews, A., Eychmueller, A., Giersig, M., Schooss, D. & Weller, H. Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98, 934–941 (1994).

    CAS  Google Scholar 

  39. Camargo, P. H. C., Lee, Y. H., Jeong, U., Zou, Z. & Xia, Y. Cation exchange: a simple and versatile route to inorganic colloidal spheres with the same size but different compositions and properties. Langmuir 23, 2985–2992 (2007).

    CAS  PubMed  Google Scholar 

  40. Luther, J. M., Zheng, H., Sadtler, B. & Alivisatos, A. P. Synthesis of PbS nanorods and other ionic nanocrystals of complex morphology by sequential cation exchange reactions. J. Am. Chem. Soc. 131, 16851–16857 (2009).

    CAS  PubMed  Google Scholar 

  41. Li, H. et al. Sequential cation exchange in nanocrystals: preservation of crystal phase and formation of metastable phases. Nano Lett. 11, 4964–4970 (2011).

    CAS  PubMed  Google Scholar 

  42. Ha, D.-H. et al. Solid–solid phase transformations induced through cation exchange and strain in 2D heterostructured copper sulfide nanocrystals. Nano Lett. 14, 7090–7099 (2014).

    CAS  PubMed  Google Scholar 

  43. Mu, L., Wang, F., Sadtler, B., Loomis, R. A. & Buhro, W. E. Influence of the nanoscale Kirkendall effect on the morphology of copper indium disulfide nanoplatelets synthesized by ion exchange. ACS Nano 9, 7419–7428 (2015).

    CAS  PubMed  Google Scholar 

  44. Fenton, J. L., Steimle, B. C. & Schaak, R. E. Tunable intraparticle frameworks for creating complex heterostructured nanoparticle libraries. Science 360, 513–517 (2018).

    CAS  PubMed  Google Scholar 

  45. Steimle, B. C., Fenton, J. L. & Schaak, R. E. Rational construction of a scalable heterostructured nanorod megalibrary. Science 367, 418–424 (2020).

    CAS  PubMed  Google Scholar 

  46. Zhao, Q. et al. Enhanced carrier transport in strongly coupled, epitaxially fused CdSe nanocrystal solids. Nano Lett. 21, 3318–3324 (2021).

    CAS  PubMed  Google Scholar 

  47. Stein, J. L. et al. Cation exchange induced transformation of InP magic-sized clusters. Chem. Mater. 29, 7984–7992 (2017).

    CAS  Google Scholar 

  48. White, S. L., Banerjee, P., Chakraborty, I. & Jain, P. K. Ion exchange transformation of magic-sized clusters. Chem. Mater. 28, 8391–8398 (2016).

    CAS  Google Scholar 

  49. Deveson, A., Dehnen, S. & Fenske, D. Syntheses and structures of four new copper(I)–selenium clusters: size dependence of the cluster on the reaction conditions. J. Chem. Soc., Dalton Trans. 23, 4491–4498 (1997).

    Google Scholar 

  50. Gui, J. et al. Phosphine-initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: old concept, new applications. Angew. Chem. Int. Ed. 54, 3683–3687 (2015).

    CAS  Google Scholar 

  51. Fuhr, O., Dehnen, S. & Fenske, D. Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 42, 1871–1906 (2013).

    CAS  PubMed  Google Scholar 

  52. Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011).

    CAS  PubMed  Google Scholar 

  53. Hagen, K. S., Stephan, D. W. & Holm, R. H. Metal ion exchange reactions in cage molecules: the systems [M4-nM’n(SC6H5)10]2− (M, M’ = Fe(II), Co(II), Zn(II), Cd(II)) with adamantane-like stereochemistry and the structure of [Fe4(SC6H5)10]2−. Inorg. Chem. 21, 3928–3936 (1982).

  54. Zeng, C. et al. Controlling magnetism of Au133(TBBT)52 nanoclusters at single electron level and implication for nonmetal to metal transition. Chem. Sci. 10, 9684–9691 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. García-Rodríguez, R. & Liu, H. Solution structure of cadmium carboxylate and its implications for the synthesis of cadmium chalcogenide nanocrystals. Chem. Commun. 49, 7857 (2013).

    Google Scholar 

  56. Kessler, J. M. et al. Comparison of solid-state and solution structures of (R3P)2CdX2, (Et3P)2Cd2X4 and (Bu3P)3Cd2X4 complexes. Magn. Reson. Chem. 29, S94–S105 (1991).

    CAS  Google Scholar 

  57. Kudera, S. et al. Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19, 548–552 (2007).

    CAS  Google Scholar 

  58. Kasuya, A. et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry. Nat. Mater. 3, 99–102 (2004).

    CAS  PubMed  Google Scholar 

  59. Chen, O. et al. Surface-functionalization-dependent optical properties of II–VI semiconductor nanocrystals. J. Am. Chem. Soc. 133, 17504–17512 (2011).

    CAS  PubMed  Google Scholar 

  60. Bootharaju, M. S. et al. Structure of a subnanometer-sized semiconductor Cd14Se13 cluster. Chem. 8, 2978–2989 (2022).

    CAS  Google Scholar 

  61. Khadka, C. B., Eichhöfer, A., Weigend, F. & Corrigan, J. F. Zinc chalcogenolate complexes as precursors to ZnE and Mn/ZnE (E = S, Se) clusters. Inorg. Chem. 51, 2747–2756 (2012).

  62. Wang, Y. et al. Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. Angew. Chem. Int. Ed. 51, 6154–6157 (2012).

  63. del Ben, M., Havenith, R. W. A., Broer, R. & Stener, M. Density functional study on the morphology and photoabsorption of CdSe nanoclusters. J. Phys. Chem. C 115, 16782–16796 (2011).

    Google Scholar 

  64. Shiang, J. J., Kadavanich, A. V., Grubbs, R. K. & Alivisatos, A. P. Symmetry of annealed wurtzite CdSe nanocrystals: assignment to the c3v point group. J. Phys. Chem. 99, 17417–17422 (1995).

    CAS  Google Scholar 

  65. Nevers, D. R., Williamson, C. B., Hanrath, T. & Robinson, R. D. Surface chemistry of cadmium sulfide magic-sized clusters: a window into ligand-nanoparticle interactions. Chem. Commun. 53, 2866–2869 (2017).

    CAS  Google Scholar 

  66. Mocatta, D. et al. Heavily doped semiconductor nanocrystal quantum dots. Science 332, 77–81 (2011).

    CAS  PubMed  Google Scholar 

  67. Smith, A. M., Lane, L. A. & Nie, S. Mapping the spatial distribution of charge carriers in quantum-confined heterostructures. Nat. Commun. 5, 4506 (2014).

    CAS  PubMed  Google Scholar 

  68. Dean, J. A. Lange’s Handbook of Chemistry (McGraw-Hill, 1999).

  69. Goodsell, D. S. The Machinery of Life (Springer, 2009).

  70. Detty, M. R. & Seidler, M. D. Bis(trialkylsilyl) chalcogenides. 1. Preparation and reduction of group VIA oxides. J. Org. Chem. 47, 1354–1356 (1982).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Ghiviriga and R. Harker for their help in low-temperature NMR characterization. Funding: this research was supported by the University of Florida start-up research funds (C.Z.). We thank the National Science Foundation for funding the X-ray diffractometer through grant no. CHE-1828064 (K.A.A.).

Author information

Authors and Affiliations

Authors

Contributions

F.M. and C.Z. conceived and designed the experiments. F.M. synthesized and characterized the materials. K.A.A. and F.M. solved X-ray structures. F.M. and C.Z. wrote the manuscript. C.Z. supervised the project.

Corresponding author

Correspondence to Chenjie Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Andrew Smith and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Nuclear magnetic resonance (NMR) characterization of the Cu26Se13(PEt2Ph)14 cluster.

a, 31P{H} NMR of free PEt2Ph ligand at room temperature (top) and Cu26Se13(PEt2Ph)14 cluster at variable temperatures (bottom). Seven peaks can be resolved at low-temperature spectra for the cluster, matching with seven chemically inequivalent phosphorous (P1 to P7) in the crystal structure (left). b, Corresponding 1H NMR spectra. c, 1H−1H correlated spectroscopy (COSY) spectrum of the cluster measured at −40 °C (left) and corresponding 1D spectrum (right). Seven groups of correlated protons in the phenyl group of the PEt2Ph ligands can be identified. The sample is measured in toluene-d8. Solvent peaks at 7.09, 6.97-7.01, and 2.08 ppm are labelled by *.

Source data

Extended Data Fig. 2 X-ray crystallographic structure of CdI2(PPr3)2.

a, Unit cell structure. The Cd(II) complexes are presented in the ball-and-stick style while the solvent molecules (toluene) are presented in the stick style. b, Tetrahedron coordination of Cd(II) centre in the individual complex. c, Bond lengths and angles around Cd(II) centre.

Extended Data Fig. 3 Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) characterization of precursor and product clusters.

a, Mass spectrum of Cu26Se13(PEt2Ph)14 cluster and corresponding assignment of fragmentation peaks. All PEt2Ph ligands are dissociated during ionization. The most intense peak is assigned to a dimeric (Cu26Se13)2Cu fragment. b, Mass spectrum of Cd26Se17I18(PPr3)10 cluster and corresponding assignment of fragmentation peaks. The Cd26Se17 cluster framework is dissociated during ionization and reorganized into characteristic fragments of CdSe materials.

Source data

Extended Data Fig. 4 Overview of X-ray crystallographic structure of the Cd26Se17I18(PPr3)10 cluster.

a, Cd26Se17 core, Cd26Se17I18P10 inorganic framework, and Cd26Se17I18(PPr3)10 cluster viewed from three different angles. The corresponding sizes are measured according to the atom-to-atom distance along the edge of the tetrahedron. b, Packing and coordination of Se17 anion lattice (top) and Cd26 cation lattice (bottom). The anion lattice features a central icosahedron capped by four apical Se. The cation lattice can be viewed as four interpenetrating icosahedra. All Se and Cd are tetrahedrally coordinated except for the four apical Se (light yellow). Green: Cd; orange: Se; pink: P; purple: I; grey: C; and white: H.

Extended Data Fig. 5 The overall transformation reaction.

a, the reaction between Cu26Se13(PEt2Ph)14 cluster and CdI2(PPr3)2 complex leads to an atomically precise Cd26Se17I18(PPr3)10 cluster. b, Shell-by-shell structural comparison of the precursors (top) with the product cluster (bottom). c, Comparison of peripheral and radial Se-Se distances of Se13 icosahedral frameworks in Cu26Se13(PEt2Ph)14 (left) and Cd26Se17I18(PPr3)10 (right).

Extended Data Fig. 6 Nuclear magnetic resonance (NMR) characterization of the Cd26Se17I18(PPr3)10 cluster.

a, 31P{1H} NMR spectra of free PPr3 ligand, CdI2(PPr3)2 complex, and Cd26Se17I18(PPr3)10 cluster. A 3:3:3:1 splitting of 10 phosphines is observed for the cluster sample. The satellite peaks observed in both complex and cluster are due to Cd-P couplings. b, Corresponding 1H NMR spectra. c, Amplified 1H NMR spectrum of the cluster at aliphatic region. The four chemically inequivalent phosphines are indicated by numbers (P1 to P4), which matches the C3 symmetry of the structure (left). The sample is measured in CDCl3 at room temperature. The solvent peaks are labelled with *.

Source data

Extended Data Fig. 7 The origin of chirality in Cd26Se17I18(PPr3)10 cluster and the packing of enantiomers in the unit cell.

a, Adaption of tetrahedral coordination into icosahedral framework induces chirality in the core. Left: icosahedral framework in left Cd26Se17 enantiomer with left-leaning Cd-Se bonds along the principal axis. Middle: achiral cuboctahedron in zincblende lattice with vertical alignments of all the Cd-Se bonds. Right: right-leaning Cd-Se bonds in the right Cd26Se17 enantiomer. b, Each unit cell contains two left (dark and light green) and two right (dark and light red) enantiomers. Arrow indicates the direction of the principal C3 axis. The corresponding orientations of enantiomers are shown in the tetrahedral outlines (right). Solvent molecules (toluene) in the unit cell are omitted for clarity.

Extended Data Fig. 8 Symmetry breaking induced by surface ligands.

The uneven distribution of six phosphines (P atom highlighted in yellow) to four corners of the tetrahedron leads to the symmetry breaking from T to C3, with three PPr3 concentrated on the top corner and one PPr3 on each of the base corners of the tetrahedron.

Extended Data Fig. 9 Cation exchange reactions with different CdI2(PR3)2 complexes (R = octyl, butyl, propyl, and ethyl).

The same 365 nm (dark blue curves) and 355 nm (light blue curves) intermediates are observed in reactions with various CdI2(PR3)2 complexes. The reaction with bulkier CdI2[P(octyl)3]2 leads to a slower 355 nm → 372 nm conversion while the reaction with less bulky CdI2(PEt3)2 results in more aggregation. CdI2(PPr3)2 shows the best results in balancing reaction rates and preventing aggregations. In situ UV-vis spectra are monitored every 10 minutes in the first hour (left) and every 2 hours for the rest of the reaction (right).

Source data

Extended Data Fig. 10 Cation exchange reactions with different CdX2(PPr3)2 complexes (X = I, Br, Cl).

Compared to the well-defined 365 nm → 355 nm → 372 nm conversions observed in the CdI2(PPr3)2 reaction, cation exchange using CdBr2(PPr3)2 results in uncontrolled aggregation at the end of the reaction. The aggregation is even faster (within a few minutes) in the case of CdCl2(PPr3)2.

Source data

Supplementary information

Supplementary Information

Supplementary Discussion, Tables 1–3 and Figs. 1–8.

Supplementary Data 1

Crystallographic data for Cu26Se13(PEt2Ph)14.

Supplementary Data 2

Crystallographic data for CdI2(PPr3)2.

Supplementary Data 3

Crystallographic data for Cd26Se17I18(PPr3)10.

Source data

Source Data Fig. 2

UV-vis, powder XRD, 1H NMR, 31P NMR of Cu26 and Cd26 clusters, respectively.

Source Data Fig. 4

In situ UV-vis spectra of the Cu26 to Cd26 conversion.

Source Data Extended Data Fig. 1

NMR spectra of the Cu26 cluster.

Source Data Extended Data Fig. 3

MALDI mass spectra of Cu26 and Cd26 clusters.

Source Data Extended Data Fig. 6

NMR spectra of the Cd26 cluster.

Source Data Extended Data Fig. 9

In situ UV-vis spectra of the cation-exchange reactions with various CdI2(PR3)2 complexes.

Source Data Extended Data Fig. 10

In situ UV-vis spectra of the cation-exchange reactions with various CdX2(PPr3)2 complexes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, F., Abboud, K.A. & Zeng, C. Precision synthesis of a CdSe semiconductor nanocluster via cation exchange. Nat. Synth 2, 949–959 (2023). https://doi.org/10.1038/s44160-023-00330-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00330-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing