Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemical formation of C–S bonds from CO2 and small-molecule sulfur species

Abstract

The formation of C–S bonds is an important step in the synthesis of pharmaceutical, biological and chemical products. Electrocatalysis using abundant precursors is an attractive and green route to C–S bond-containing species, but examples within this context are largely absent from the literature. To this end, this work demonstrates the use of CO2 and SO32− as cheap building blocks that couple on the surface Cu-based heterogeneous catalysts. Hydroxymethanesulfonate, sulfoacetate and methanesulfonate are formed, with Faradaic efficiencies of up to 6.8%. A combination of operando measurements and computational modelling reveal that the *CHOH intermediate formed on metallic Cu is a key electrophilic species that is nucleophilically attacked by SO32− in the principal C–S bond-forming step. The proof-of-concept for electrocatalytic C–S bond formation and mechanistic insights gained will broaden the scope of the emerging field of electrosynthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of electrochemical C–S coupling.
Fig. 2: Electrochemical synthesis of C–S products.
Fig. 3: Analysis of catalyst and reaction dynamics.
Fig. 4: Modelling of possible reaction pathways from CO to HMS.
Fig. 5: Energy diagram on Cu (100).
Fig. 6: Expanded scope of C–S coupling.

Similar content being viewed by others

Data availability

All data will be deposited in ChemRxiv, a publicly accessible repository (https://chemrxiv.org/engage/chemrxiv/article-details/6397d9a0cfb5ff102468e064).

References

  1. Lagadec, M. F. & Grimaud, A. Water electrolysers with closed and open electrochemical systems. Nat. Mater. 19, 1140–1150 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

    Article  CAS  Google Scholar 

  3. Masel, R. I. et al. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 16, 118–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Y., Li, J. & Kornienko, N. Strategies for heterogeneous small-molecule electrosynthesis. Cell Rep. Phys. Sci. 2, 100682 (2021).

    Article  CAS  Google Scholar 

  5. Perry, S. C. et al. Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019).

    Article  CAS  Google Scholar 

  6. Suryanto, B. H. R. et al. Challenges and prospects in the catalysis of electroreduction of nitrogen to ammonia. Nat. Catal. 2, 290–296 (2019).

    Article  CAS  Google Scholar 

  7. Li, J., Zhang, Y., Kuruvinashetti, K. & Kornienko, N. Construction of C–N bonds from small-molecule precursors through heterogeneous electrocatalysis. Nat. Rev. Chem. 6, 303–319 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Fontecave, M., Ollagnier-de-Choudens, S. & Mulliez, E. Biological radical sulfur insertion reactions. Chem. Rev. 103, 2149–2166 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Mansy, S. S. & Cowan, J. A. Iron–sulfur cluster biosynthesis: toward an understanding of cellular machinery and molecular mechanism. Acc. Chem. Res. 37, 719–725 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, C., Rakesh, K. P., Ravidar, L., Fang, W.-Y. & Qin, H.-L. Pharmaceutical and medicinal significance of sulfur (SVI)-containing motifs for drug discovery: a critical review. Eur. J. Med. Chem. 162, 679–734 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Devendar, P. & Yang, G.-F. in Sulfur Chemistry (ed. Jiang, X.) 35–78 (Springer International Publishing, 2019).

  12. Rosenman, A. et al. Review on Li-sulfur battery systems: an integral perspective. Adv. Energy Mater. 5, 1500212 (2015).

    Article  Google Scholar 

  13. Barbarella, G., Melucci, M. & Sotgiu, G. The versatile thiophene: an overview of recent research on thiophene-based materials. Adv. Mater. 17, 1581–1593 (2005).

    Article  CAS  Google Scholar 

  14. Sakakura, A., Yamada, H. & Ishihara, K. Enantioselective Diels–Alder reaction of α-(acylthio)acroleins: a new entry to sulfur-containing chiral quaternary carbons. Org. Lett. 14, 2972–2975 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Wu, X.-S., Chen, Y., Li, M.-B., Zhou, M.-G. & Tian, S.-K. Direct substitution of primary allylic amines with sulfinate salts. J. Am. Chem. Soc. 134, 14694–14697 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Mukhopadhyay, S. & Bell, A. T. Catalyzed sulfonation of methane to methanesulfonic acid. J. Mol. Catal. A: Chem. 211, 59–65 (2004).

    Article  CAS  Google Scholar 

  17. Uraguchi, D., Kinoshita, N., Nakashima, D. & Ooi, T. Chiral ionic Brønsted acid–achiral Brønsted base synergistic catalysis for asymmetric sulfa-Michael addition to nitroolefins. Chem. Sci. 3, 3161–3164 (2012).

    Article  CAS  Google Scholar 

  18. Savateev, A., Kurpil, B., Mishchenko, A., Zhang, G. & Antonietti, M. A “waiting” carbon nitride radical anion: a charge storage material and key intermediate in direct C–H thiolation of methylarenes using elemental sulfur as the “S”-source. Chem. Sci. 9, 3584–3591 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Su, F. et al. Aerobic oxidative coupling of amines by carbon nitride photocatalysis with visible light. Angew. Chem. Int. Ed. 50, 657–660 (2011).

    Article  CAS  Google Scholar 

  20. Britschgi, J., Kersten, W., Waldvogel, S. R. & Schüth, F. Electrochemically initiated synthesis of methanesulfonic acid. Angew. Chem. Int. Ed. 61, e202209591 (2022).

    Article  CAS  Google Scholar 

  21. Li, J. & Kornienko, N. Electrochemically driven C–N bond formation from CO2 and ammonia at the triple-phase boundary. Chem. Sci. 13, 3957–3964 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen, C. et al. Coupling N2 and CO2 in H2O to synthesize urea under ambient conditions. Nat. Chem. 12, 717–724 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Wu, Y., Jiang, Z., Lin, Z., Liang, Y. & Wang, H. Direct electrosynthesis of methylamine from carbon dioxide and nitrate. Nat. Sustain. 4, 725–730 (2021).

    Article  Google Scholar 

  24. Meng, N., Huang, Y., Liu, Y., Yu, Y. & Zhang, B. Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Rep. Phys. Sci. 2, 100378 (2021).

    Article  CAS  Google Scholar 

  25. Rayner-Canham, G. Isodiagonality in the periodic table. Found. Chem. 13, 121–129 (2011).

    Article  CAS  Google Scholar 

  26. Nitopi, S. et al. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte. Chem. Rev. 119, 7610–7672 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Barberá, J. J., Metzger, A. & Wolf, M. in Ullmann’s Encyclopedia of Industrial Chemistry (2000). https://onlinelibrary.wiley.com/doi/10.1002/14356007.a25_477

  28. Fatehi, P. & Ni, Y. in Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass ACS Symposium Series (eds Zhu, J. Y., Zhang, X., & Pan, X.) 1067, 409–441 (American Chemical Society, 2011).

  29. Taylor, S. L., Higley, N. A. & Bush, R. K. in Advances in Food Research Vol. 30 (eds Chichester, C. O., Mrak, E. M. & Schweigert, B. S.) 1–76 (Academic Press, 1986).

  30. Nascimento, B. et al. Application of cellulose sulfoacetate obtained from sugarcane bagasse as an additive in mortars. J. App. Polym. Sci. 124, 510–517 (2012).

    Article  CAS  Google Scholar 

  31. Seeponkai, N. & Wootthikanokkhan, J. Proton conductivity and methanol permeability of sulfonated poly(vinyl alcohol) membranes modified by using sulfoacetic acid and poly(acrylic acid). J. App. Polym. Sci. 105, 838–845 (2007).

    Article  CAS  Google Scholar 

  32. D Gernon, M., Wu, M., Buszta, T. & Janney, P. Environmental benefits of methanesulfonic acid. Comparative properties and advantages. Green Chem. 1, 127–140 (1999).

    Article  Google Scholar 

  33. Balaji, R. & Pushpavanam, M. Methanesulphonic acid in electroplating related metal finishing industries. Trans. IMF 81, 154–158 (2003).

    Article  CAS  Google Scholar 

  34. Nacsa, E. D. & Lambert, T. H. Cyclopropenone catalyzed substitution of alcohols with mesylate ion. Org. Lett. 15, 38–41 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. V Makarov, S. Recent trends in the chemistry of sulfur-containing reducing agents. Russ. Chem. Rev. 70, 885–895 (2001).

    Article  Google Scholar 

  36. Sulphonate Additives Market (Fact.MR, 2022).

  37. Methane Sulfonic Acid Market (Market Research Future, 2023).

  38. Ho, J.-Y. & Huang, M. H. Synthesis of submicrometer-sized Cu2O crystals with morphological evolution from cubic to hexapod structures and their comparative photocatalytic activity. J. Phys. Chem. C 113, 14159–14164 (2009).

    Article  CAS  Google Scholar 

  39. Boutin, E., Salamé, A., Merakeb, L., Chatterjee, T. & Robert, M. On the existence and role of formaldehyde during aqueous electrochemical reduction of carbon monoxide to methanol by cobalt phthalocyanine. Chem. Eur. J 28, e202200697 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Scott, S. B. et al. Absence of oxidized phases in Cu under CO reduction conditions. ACS Energy Letters 4, 803–804 (2019).

    Article  CAS  Google Scholar 

  41. Yang, S. et al. Near-unity electrochemical CO2 to CO conversion over Sn-doped copper oxide nanoparticles. ACS Catal 12, 15146–15156 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Markin, A. V., Markina, N. E., Popp, J. & Cialla-May, D. Copper nanostructures for chemical analysis using surface-enhanced Raman spectroscopy. TrAC Trends in Analytical Chemistry 108, 247–259 (2018).

    Article  CAS  Google Scholar 

  43. Chernyshova Irina, V., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl Acad. Sci. USA 115, E9261–E9270 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Firet, N. J. & Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 7, 606–612 (2017).

    Article  CAS  Google Scholar 

  45. Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121, 12337–12344 (2017).

    Article  CAS  Google Scholar 

  46. Chen, X. et al. Controlling speciation during CO2 reduction on Cu-Alloy electrodes. ACS Catal. 10, 672–682 (2020).

    Article  CAS  Google Scholar 

  47. Li, X. et al. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 4, 690–699 (2019).

    Article  CAS  Google Scholar 

  48. Zhao, Y. et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 142, 9735–9743 (2020).

    CAS  PubMed  Google Scholar 

  49. Niu, Z.-Z. et al. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 143, 8011–8021 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Pan, Z. et al. Intermediate adsorption states switch to selectively catalyze electrochemical CO2 reduction. ACS Catal. 10, 3871–3880 (2020).

    Article  CAS  Google Scholar 

  51. Al-Mahayni, H., Wang, X., Harvey, J.-P., Patience, G. S. & Seifitokaldani, A. Experimental methods in chemical engineering: density functional theory. Can. J. Chem. Eng. 99, 1885–1911 (2021).

    Article  CAS  Google Scholar 

  52. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  53. Jouny, M. et al. Formation of carbon–nitrogen bonds in carbon monoxide electrolysis. Nat. Chem. 11, 846–851 (2019).

    Article  CAS  PubMed  Google Scholar 

  54. Meng, N. et al. Electrosynthesis of formamide from methanol and ammonia under ambient conditions. Nat. Commun. 13, 5452 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rooney, C. L., Wu, Y., Tao, Z. & Wang, H. Electrochemical reductive N-methylation with CO2 enabled by a molecular catalyst. J. Am. Chem. Soc. 143, 19983–19991 (2021).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, Y. et al. Oxy-reductive CN bond formation via pulsed electrolysis. Preprint at ChemRxiv (2022).

  57. Feng, Y. et al. Te-doped Pd nanocrystal for electrochemical urea production by efficiently coupling carbon dioxide reduction with nitrite reduction. Nano Letters 20, 8282–8289 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Cao, N. et al. Oxygen vacancies enhanced cooperative electrocatalytic reduction of carbon dioxide and nitrite ions to urea. J. Colloid Interface Sci. 577, 109–114 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Yuan, M. et al. Highly selective electroreduction of N2 and CO2 to urea over artificial frustrated Lewis pairs. Energy Environ. Sci. 14, 6605–6615 (2021).

    Article  CAS  Google Scholar 

  60. Muramoto, E. et al. Toward benchmarking theoretical computations of elementary rate constants on catalytic surfaces: formate decomposition on Au and Cu. Chem. Sci. 13, 804–815 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Ojeda, M. & Iglesia, E. Formic acid dehydrogenation on Au-based catalysts at near-ambient temperatures. Angew. Chem. Int. Ed. 48, 4800–4803 (2009).

    Article  CAS  Google Scholar 

  62. Ammon, C. et al. Dissociation and oxidation of methanol on Cu(110). Surface Science 507-510, 845–850 (2002).

    Article  CAS  Google Scholar 

  63. Chen, W.-K., Liu, S.-H., Cao, M.-J., Yan, Q.-G. & Lu, C.-H. Adsorption and dissociation of methanol on Au(1 1 1) surface: a first-principles periodic density functional study. J. Mol. Struct. 770, 87–91 (2006).

    Article  CAS  Google Scholar 

  64. Ben David, R., Ben Yaacov, A., Head, A. R. & Eren, B. Methanol decomposition on copper surfaces under ambient conditions: mechanism, surface kinetics, and structure sensitivity. ACS Catal. 12, 7709–7718 (2022).

    Article  Google Scholar 

  65. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Gu, J. et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat. Catal. 5, 268–276 (2022).

    Article  CAS  Google Scholar 

  68. Li, J. & Kornienko, N. Electrocatalytic carbon dioxide reduction in acid. Chem. Catalysis 2, 29–38 (2022).

    Article  CAS  Google Scholar 

  69. Kim, J. Y. T. et al. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 5, 288–299 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N.K. and J. L. acknowledge the NSERC for its Discovery Grant RGPIN-2019-05927. A.S. acknowledges the NSERC for its Discovery Grant RGPIN-2020-04960 and Canada Research Chair (950-23288). The computations in this research were enabled in part by support provided by Calcul Quebec and Compute Canada.

Author information

Authors and Affiliations

Authors

Contributions

J.L., D.C. and N.K. carried out electrochemical and operando studies. H.A.-M. and A.S. carried out computational work. All authors contributed to analysis and to the manuscript.

Corresponding authors

Correspondence to Ali Seifitokaldani or Nikolay Kornienko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks H. Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Extended methods description and Supplementary figs. 1–41.

Source data

Source Data Fig. 2

Unprocessed data of: NMR spectra for standards and reaction solution (a), linear scan voltammetry traces (b), FE for products (c,d) and partial current density (e).

Source Data Fig. 3

Potential and time-dependent XRD and Raman spectra.

Source Data Fig. 5

Energies of reaction intermediates in the calculated free energy landscape.

Source Data Fig. 6

Raw values of product formation rates.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Al-Mahayni, H., Chartrand, D. et al. Electrochemical formation of C–S bonds from CO2 and small-molecule sulfur species. Nat. Synth 2, 757–765 (2023). https://doi.org/10.1038/s44160-023-00303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00303-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing