Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deoxygenative Suzuki–Miyaura arylation of tertiary alcohols through silyl ethers

Abstract

Conventional Suzuki–Miyaura arylations use halogenated compounds as electrophilic coupling partners. Although the catalytic activation of organohalides is well established, these substrates are seldom naturally abundant and questions exist as to their metabolic and environmental friendliness. Owing to their existence as readily available chemical feedstocks, alcohols are highly desirable cross-coupling partners, although pathways to activate the strong C–O bond are rarer. Here the coupling of tertiary alcohols with boronic esters through in situ alcohol silylation is described, providing access to quaternary carbon scaffolds without needing to proceed by an activated alkyl halide or pseudohalide intermediate. A dual catalyst system is used with both Ni(0) and Bi(III) components playing a critical role, along with a mild chlorosilane reactant. This method was found to tolerate diverse functional groups including chloro, nitro, olefin, ketone, ester and phenol moieties, while also being applicable to the derivatization of heterocyclic scaffolds. Mechanistic studies suggest the combination of a Lewis acid catalyst and organosilane promote the heterolytic cleavage of the substrate C–O bond to generate an electrophilic intermediate, providing a powerful strategy for derivatizing readily available alcohols.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contemporary strategies for cross-coupling of unprotected alcohols.
Fig. 2: Mechanistic experiments to examine potential reaction intermediates.

Similar content being viewed by others

Data availability

The data supporting the findings of the study are available in the paper and its Supplementary Information.

References

  1. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).

    CAS  PubMed  Google Scholar 

  2. Buskes, M. J. & Blanco, M.-J. Impact of cross-coupling reactions in drug discovery and development. Molecules 25, 3493 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    CAS  Google Scholar 

  4. Koshvandi, A. T. K., Heravi, M. M. & Momeni, T. Current applications of Suzuki-Miyaura coupling reaction in the total synthesis of natural products: an update. App. Organomet. Chem. 32, e4210 (2018).

    Google Scholar 

  5. Glasspoole, B. W. & Crudden, C. M. Cross-coupling: the final frontier. Nat. Chem. 3, 912–913 (2011).

    CAS  PubMed  Google Scholar 

  6. Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl-alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    PubMed  PubMed Central  Google Scholar 

  7. Yu, D.-G., Li, B.-J. & Shi, Z.-J. Exploration of new C−O electrophiles in cross-coupling reactions. Acc. Chem. Res. 43, 1486–1495 (2010).

    CAS  PubMed  Google Scholar 

  8. Zhou, T. & Szostak, M. Palladium-catalyzed cross-couplings by C−O bond activation. Catal. Sci. Technol. 10, 5702–5739 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yu, D.-G. et al. Direct application of phenolic salts to nickel-catalyzed cross-coupling reactions with aryl Grignard reagents. Angew. Chem. Int. Ed. 49, 4566–4570 (2010).

    CAS  Google Scholar 

  10. Zeng, H. et al. An adventure in sustainable cross-coupling of phenols and derivatives via carbon-oxygen bond cleavage. ACS Catal. 7, 510–519 (2017).

    CAS  Google Scholar 

  11. Yu, D.-G. et al. Direct arylation/alkylation/magnesiation of benzyl alcohols in the presence of Grignard reagents via Ni-, Fe- or Co- catalyzed sp3 C−O bond activation. J. Am. Chem. Soc. 134, 14638–14641 (2012).

    CAS  PubMed  Google Scholar 

  12. Guo, P. et al. Dynamic kinetic cross-electrophile arylation of benzyl alcohols by nickel catalysis. J. Am. Chem. Soc. 143, 513–523 (2021).

    CAS  PubMed  Google Scholar 

  13. Suga, T. & Ukaji, Y. Nickel-catalyzed cross-electrophile coupling between benzyl alcohols and aryl halides assisted by titanium co-reductant. Org. Lett. 20, 7846–7850 (2018).

    CAS  PubMed  Google Scholar 

  14. Nazari, S. H. et al. Nickel-catalyzed Suzuki cross-couplings with unprotected allylic alcohols enabled by bidentate N-heterocyclic carbene (NHC)/phosphine ligands. ACS Catal. 8, 85–89 (2018).

    Google Scholar 

  15. Zhang, X. & MacMillan, D. W. C. Alcohols as latent coupling fragments for metallaphotoredox catalysis: sp3-sp2 cross-coupling of oxalates with aryl halides. J. Am. Chem. Soc. 138, 13862–13865 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mills, R. J., Monteith, J. J., dos Passos Gomes, G., Aspuru-Guzik, A. & Rousseaux, S. A. L. The cyclopropane ring as a reporter of radical leaving-group reactivity for Ni-catalyzed C(sp3)−O arylation. J. Am. Chem. Soc. 142, 13246–13254 (2020).

    CAS  PubMed  Google Scholar 

  17. Dong, Z. & MacMillan, D. W. C. Metallaphotoredox-enabled deoxygenative arylation of alcohols. Nature 598, 451–456 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lackner, G. L., Quasdorf, K. W. & Overman, L. E. Direct construction of quaternary carbons from tertiary alcohols via photoredox-catalyzed fragmentation of tert-alkyl N-phthalimidoyl oxalates. J. Am. Chem. Soc. 135, 15342–15345 (2013).

    CAS  PubMed  Google Scholar 

  19. Kariofillis, S. et al. Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J. Am. Chem. Soc. 144, 1045–1055 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ye, Y., Chen, H., Sessler, J. L. & Gong, H. Zn-mediated fragmentation of tertiary alkyl oxalates enabling formation of alkylated and arylated quaternary carbon centers. J. Am. Chem. Soc. 141, 820–824 (2019).

    CAS  PubMed  Google Scholar 

  21. Li, Z. et al. Electrochemically enabled, nickel-catalyzed dehydroxylative cross-coupling of alcohols with aryl halides. J. Am. Chem. Soc. 143, 3536–3543 (2021).

    CAS  PubMed  Google Scholar 

  22. Lin, Q., Ma, G. & Gong, H. Ni-catalyzed formal cross-electrophile coupling of alcohols with aryl halides. ACS Catal. 11, 14102–14109 (2021).

    CAS  Google Scholar 

  23. Chi, B. K. et al. In-situ bromination enables formal cross-electrophile coupling of alcohols with aryl and alkenyl halides. ACS Catal. 12, 580–586 (2022).

    CAS  PubMed  Google Scholar 

  24. Xie, H. et al. Radical dehydroxylative alkylation of tertiary alcohols by Ti catalysis. J. Am. Chem. Soc. 142, 16787–16794 (2020).

    CAS  PubMed  Google Scholar 

  25. Sakai, H. A. & MacMillan, D. W. C. Nontraditional fragment couplings of alcohols and carboxylic acids: C(sp3)-C(sp3) cross-coupling via radical sorting. J. Am. Chem. Soc. 144, 6185–6192 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Emer, E. et al. Direct nucleophilic SN1-type reactions of alcohols. Eur. J. Org. Chem. 2011, 647–667 (2011).

    Google Scholar 

  27. Yasuda, M., Somyo, T. & Baba, A. Direct carbon-carbon bond formation from alcohols and active methylenes, alkoxyketones, or indoles catalyzed by indium trichloride. Angew. Chem. Int. Ed. 45, 793–796 (2006).

    CAS  Google Scholar 

  28. Jia, X.-G., Guo, P., Duan, J. & Shu, X.-Z. Dual nickel and Lewis acid catalysis for cross-electrophile coupling: the allylation of aryl halides with allylic alcohols. Chem. Sci. 9, 640–645 (2018).

    CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Lewis-acid assisted nickel-catalyzed cross-coupling of aryl methyl ethers by C−O bond-cleaving alkylation: prevention of undesired β-hydride elimination. Angew. Chem. Int. Ed. 55, 6093–6098 (2016).

    CAS  Google Scholar 

  30. Isbrandt, E. S., Sullivan, R. J. & Newman, S. G. High-throughput strategies for the discovery and optimization of catalytic reactions. Angew. Chem. Int. Ed. 58, 7180–7191 (2019).

    CAS  Google Scholar 

  31. Tulloch, A. A. D., Danopoulos, A. A., Winston, S., Kleinhenz, S. & Eastham, G. N-functionalized heterocyclic carbene complexes of silver. J. Chem. Soc. Dalton Trans. 24, 4499–4506 (2000).

    Google Scholar 

  32. Kolsi, L. E., Yli-Kauhaluoma, J. & Moreira, V. M. Catalytic, tunable, one-step bismuth (III) triflate reaction with alcohols: dehydration versus dimerization. ACS Omega 3, 8836–8842 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Zultanski, S. L. & Fu, G. C. Nickel-catalyzed carbon-carbon bond-forming reactions of unactivated tertiary alkyl halides: Suzuki arylations. J. Am. Chem. Soc. 135, 624–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Qin, T. et al. A general alkyl-alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Primer, D. N. & Molander, G. A. Enabling the cross-coupling of tertiary organoboron nucleophiles through radical-mediated alkyl transfer. J. Am. Chem. Soc. 139, 9847–9850 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Dorsheimer, J. R., Ashley, M. A. & Rovis, T. Dual nickel/photoredox-catalyzed deaminative cross-coupling of sterically hindered primary amines. J. Am. Chem. Soc. 143, 19294–19299 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dryzhakov, M., Hellal, M., Wolf, E., Falk, F. C. & Moran, J. Nitro-assisted Bronsted acid catalysis: application to a challenging catalytic azidation. J. Am. Chem. Soc. 137, 9555–9558 (2015).

    CAS  PubMed  Google Scholar 

  38. Baba, A., Yasuda, M., Nishimoto, Y., Saito, T. & Onishi, Y. Reaction of alcohols and silyl ethers in the presence of an indium/silicon-based catalyst system: deoxygenation and allyl substitution. Pure. App. Chem. 80, 845–854 (2008).

    CAS  Google Scholar 

  39. Wiensch, E., Todd, D. & Montgomery, J. Silyloxyarenes as versatile coupling substrates enabled by nickel-catalyzed C−O bond cleavage. ACS Catal. 7, 5568–5571 (2017).

    CAS  Google Scholar 

  40. Yasuda, M., Yamasaki, S., Onishi, Y. & Baba, A. Indium-catalyzed direct chlorination of alcohols using chlorodimethylsilane-benzil as a selective and mild system. J. Am. Chem. Soc. 126, 7186–7187 (2004).

    CAS  PubMed  Google Scholar 

  41. Jefferies, L. R. & Cook, S. P. Iron-catalyzed arene alkylation reactions with unactivated secondary alcohols. Org. Lett. 16, 2026–2029 (2014).

    CAS  PubMed  Google Scholar 

  42. Labrouillère, M., Le Roux, C., Gaspard-Iloughmane, H. & Dubac, J. Bismuth(III) chloride-catalyzed chlorination of alcohols by chlorosilanes. Synlett 9, 723–724 (1994).

    Google Scholar 

  43. Xiao, L.-J. et al. Nickel(0)-catalyzed hydroarylation of styrenes and 1,3-dienes with organoboron compounds. Angew. Chem. Int. Ed. 57, 461–464 (2017).

    Google Scholar 

  44. Lv, H., Xiao, L.-J., Zhao, D. & Zhou, Q.-L. Nickel(0)-catalyzed linear-selective hydroarylation of unactivated alkenes and styrenes with aryl boronic acids. Chem. Sci. 9, 6839–6843 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zultanski, S. L. & Fu, G. C. Nickel-catalyzed carbon-carbon bond-forming reactions of unactivated tertiary alkyl halides: Suzuki arylations. J. Am. Chem. Soc. 135, 624–627 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Diccianni, J. B. & Diao, T. Mechanisms of nickel-catalyzed cross-coupling reactions. Trends in Chem. 9, 830–844 (2019).

    Google Scholar 

  47. Bowry, V. W., Lusztyk, J. & Ingold, K. U. Calibration of a new horologery of fast radical clocks. Ring-opening rates for ring- and α-alkyl-substituted cyclopropylcarbinyl radicals and for the bicyclo[2.1.0]pent-2-yl radical. J. Am. Chem. Soc. 113, 5687–5698 (1991).

    CAS  Google Scholar 

  48. Walling, C. & Cioffari, A. Cyclization of 5-hexenyl radicals. J. Am. Chem. Soc. 94, 6059–6064 (1972).

    CAS  Google Scholar 

  49. Hammett, L. P. Some relations between reaction rates and equilibrium constants. Chem. Rev. 17, 125–136 (1935).

    CAS  Google Scholar 

  50. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    CAS  Google Scholar 

  51. Vives, G., Gonzalez, A., Jaud, J., Launay, J.-P. & Rapenne, G. Synthesis of molecular motors incorporating para-phenylene-conjugated or bicyclo[2.2.2]octane-insulated electroactive groups. Chem. Eur. J. 13, 5622–5631 (2007).

    CAS  PubMed  Google Scholar 

  52. Burés, J. A simple graphical method to determine the order in catalyst. Angew. Chem. Int. Ed. 55, 2028–2031 (2016).

    Google Scholar 

  53. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

    CAS  Google Scholar 

  54. Phan, T. B., Nolte, C., Kobayashi, S., Ofial, A. R. & Mayr, H. Can one predict changes from SN1 to SN2 mechanisms? J. Am. Chem. Soc. 131, 11392–11401 (2009).

    CAS  PubMed  Google Scholar 

  55. Winstein, S., Grunwald, E. & Jones, H. W. The correlation of solvolysis rates and the classification of solvolysis reactions into mechanistic categories. J. Am. Chem. Soc. 73, 2700–2707 (1951).

    CAS  Google Scholar 

  56. Krumper, J. R., Salamant, W. A. & Woerpel, K. A. Continuum of mechanisms for nucleophilic substitution of cyclic acetals. Org. Lett. 10, 4907–4910 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Danopoulos, A. A., Tulloch, A. A. D., Winston, S., Eastham, G. & Hursthouse, M. B. Chelating and ‘pincer’ dicarbene complexes of palladium; synthesis and structural studies. Dalton Trans. 5, 1009–1015 (2003).

    Google Scholar 

Download references

Acknowledgements

Financial support for this work was provided by the National Science and Engineering Research Council of Canada (grant no. RGPIN-2020-05065) and the Canada Research Chair Program (grant no. 950-232650). The Canadian Foundation for Innovation and the Ontario Ministry of Research, Innovation, & Science are thanked for essential infrastructure. A.C. thanks the National Science and Engineering Research Council of Canada for a Canada Graduate Scholarship–Doctoral fellowship.

Author information

Authors and Affiliations

Authors

Contributions

A.C. and S.G.N. designed the project. A.C. discovered and developed the reaction. A.C. and P.S.O. carried out all experimental work. A.C. wrote the draft of the paper and Supplementary Information. All authors participated in revising the paper.

Corresponding author

Correspondence to Stephen G. Newman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Martins Oderinde, Xing-Zhong Shu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–16, Discussion, Experimental details and NMR spectra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cook, A., St. Onge, P. & Newman, S.G. Deoxygenative Suzuki–Miyaura arylation of tertiary alcohols through silyl ethers. Nat. Synth 2, 663–669 (2023). https://doi.org/10.1038/s44160-023-00275-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00275-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing