Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalytic enantioselective synthesis of boron-stereogenic BODIPYs

Abstract

Boron dipyrromethenes (BODIPYs) are a class of tetracoordinate boron compounds that have attracted considerable interest in recent decades due to their excellent spectroscopic properties and structural versatility, leading to their widespread applications in chemical, biological, pharmaceutical and materials science. However, BODIPYs possessing boron-stereogenic centres in enantioenriched forms are rare and catalytic methodology to enantioselectively prepare a boron-stereogenic BODIPY remains elusive. Here we report a palladium-catalysed protocol for the enantioselective synthesis of boron-stereogenic BODIPYs via a desymmetric intramolecular C–H arylation reaction. This method gives access to a wide range of highly functionalized boron-stereogenic BODIPYs, including six- to nine-membered boron heterocycles, with good to excellent enantioselectivities. The discrimination of the two α C–H bonds of the BODIPY core is enabled by the co-action of steric hindrance and attractive interaction in the catalytic chiral pocket. Photophysical properties, derivatizations and applications in chiral recognition of the obtained chiroptical BODIPYs are investigated. This work enriches the chemical diversity of chiroptical BODIPY dyes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Research status of boron-stereogenic BODIPYs and design of catalytic enantioselective approach.
Fig. 2: Development of palladium-catalysed enantioselective C–H arylation towards N2O-type boron-stereogenic BODIPYs.
Fig. 3: Photophysical properties and synthetic applications.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information files. Raw data are also available from the corresponding author on reasonable request. Materials and methods, experimental procedures, characterization data, 1H, 13C, 19F, 11B NMR spectra and mass spectrometry data are available in the Supplementary Information. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number CCDC 2175350 (2w). These data can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/data_request/cif.

References

  1. Pop, F., Zigon, N. & Avarvari, N. Main-group-based electro- and photoactive chiral materials. Chem. Rev. 119, 8435–8478 (2019).

    CAS  PubMed  Google Scholar 

  2. Loudet, A. & Burgess, K. BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem. Rev. 107, 4891–4932 (2007).

    CAS  PubMed  Google Scholar 

  3. Ulrich, G., Ziessel, R. & Harriman, A. The chemistry of fluorescent BODIPY dyes: versatility unsurpassed. Angew. Chem. Int. Ed. 47, 1184–1201 (2008).

    CAS  Google Scholar 

  4. Boens, N., Leen, V. & Dehaen, W. Fluorescent indicators based on BODIPY. Chem. Soc. Rev. 41, 1130–1172 (2012).

    CAS  PubMed  Google Scholar 

  5. Kamkaew, A. et al. BODIPY dyes in photodynamic therapy. Chem. Soc. Rev. 42, 77–88 (2013).

    CAS  PubMed  Google Scholar 

  6. Kolemen, S. & Akkaya, E. U. Reaction-based BODIPY probes for selective bio-imaging. Coord. Chem. Rev. 354, 121–134 (2018).

    CAS  Google Scholar 

  7. Boens, N., Verbelen, B., Ortiz, M. J., Jiao, L. & Dehaen, W. Synthesis of BODIPY dyes through postfunctionalization of the boron dipyrromethene core. Coord. Chem. Rev. 399, 213024 (2019).

    CAS  Google Scholar 

  8. Poddar, M. & Misra, R. Recent advances of BODIPY based derivatives for optoelectronic applications. Coord. Chem. Rev. 421, 213462 (2020).

    CAS  Google Scholar 

  9. Lu, H., Mack, J., Nyokong, T., Kobayashi, N. & Shen, Z. Optically active BODIPYs. Coord. Chem. Rev. 318, 1–15 (2016).

    CAS  Google Scholar 

  10. Sanchez-Carnerero, E. M. et al. Circularly polarized luminescence by visible-light absorption in a chiral O-BODIPY dye: unprecedented design of CPL organic molecules from achiral chromophores. J. Am. Chem. Soc. 136, 3346–3349 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Alnoman, R. B. et al. Circularly polarized luminescence from helically chiral N,N,O,O-boron-chelated dipyrromethenes. Chemistry 22, 93–96 (2016).

    CAS  PubMed  Google Scholar 

  12. Saikawa, M., Nakamura, T., Uchida, J., Yamamura, M. & Nabeshima, T. Synthesis of figure-of-eight helical bisBODIPY macrocycles and their chiroptical properties. Chem. Commun. 52, 10727–10730 (2016).

    CAS  Google Scholar 

  13. Wu, Y., Wang, S., Li, Z., Shen, Z. & Lu, H. Chiral binaphthyl-linked BODIPY analogues: synthesis and spectroscopic properties. J. Mater. Chem. C 4, 4668–4674 (2016).

    CAS  Google Scholar 

  14. Clarke, R. et al. Circularly polarised luminescence from helically chiral ‘confused’ N,N,O,C-boron-chelated dipyrromethenes (BODIPYs). ChemPhotoChem 1, 513–517 (2017).

    CAS  Google Scholar 

  15. Guerrero-Corella, A. et al. BODIPY as electron withdrawing group for the activation of double bonds in asymmetric cycloaddition reactions. Chem. Sci. 10, 4346–4351 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Maeda, C., Nagahata, K., Shirakawa, T. & Ema, T. Azahelicene-fused BODIPY analogues showing circularly polarized luminescence. Angew. Chem. Int. Ed. 59, 7813–7817 (2020).

    CAS  Google Scholar 

  17. Rigotti, T. et al. Boron dipyrromethene (BODIPY) as electron-withdrawing group in asymmetric copper-catalyzed [3 + 2] cycloadditions for the synthesis of pyrrolidine-based biological sensors. Adv. Synth. Catal. 362, 1345–1355 (2020).

    CAS  Google Scholar 

  18. Meazza, M. et al. Studying the reactivity of alkyl substituted BODIPYs: first enantioselective addition of BODIPY to MBH carbonates. Chem. Sci. 12, 4503–4508 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Docekal, V. et al. Stereoselective cyclopropanation of boron dipyrromethene (BODIPY) derivatives by an organocascade reaction. Adv. Synth. Catal. 364, 930–937 (2022).

    CAS  Google Scholar 

  20. Haefele, A., Zedde, C., Retailleau, P., Ulrich, G. & Ziessel, R. Boron asymmetry in a BODIPY derivative. Org. Lett. 12, 1672–1675 (2010).

    CAS  PubMed  Google Scholar 

  21. Gobo, Y., Matsuoka, R., Chiba, Y., Nakamura, T. & Nabeshima, T. Synthesis and chiroptical properties of phenanthrene-fused N2O-type BODIPYs. Tetrahedron Lett. 59, 4149–4152 (2018).

    CAS  Google Scholar 

  22. Vedejs, E. et al. Asymmetric memory at labile, stereogenic boron: enolate alkylation of oxazaborolidinones. J. Am. Chem. Soc. 121, 2460–2470 (1999).

    CAS  Google Scholar 

  23. Charoy, L. et al. Synthesis of benzylcyanoborane adducts of amines and separation of their enantiomers; SN2 substitution at boron atom. Chem. Commun. 2275–2276 (2000).

  24. Imamoto, T. & Morishita, H. An enantiomerically pure tetracoordinate boron compound: stereochemistry of substitution reactions at the chirogenic boron atom. J. Am. Chem. Soc. 122, 6329–6330 (2000).

    CAS  Google Scholar 

  25. Toyota, S., Ito, F., Nitta, N. & Hakamata, T. Substituent effects on configurational stabilities at tetrahedral boron atoms in intramolecular borane–amine complexes: structures, enantiomeric resolution, and rates of enantiomerization of [2-(dimethylaminomethyl)phenyl]phenylboranes.Bull. Bull. Chem. Soc. Jpn. 77, 2081–2088 (2004).

    CAS  Google Scholar 

  26. Braun, M., Schlecht, S., Engelmann, M., Frank, W. & Grimme, S. Boron-based diastereomerism and enantiomerism in imine complexes—determination of the absolute configuration at boron by CD spectroscopy. Eur. J. Org. Chem. 2008, 5221–5225 (2008).

  27. Kaiser, P. F., White, J. M. & Hutton, C. A. Enantioselective preparation of a stable boronate complex stereogenic only at boron. J. Am. Chem. Soc. 130, 16450–16451 (2008).

    CAS  PubMed  Google Scholar 

  28. Schlecht, S., Frank, W. & Braun, M. Stereogenic boron in 2-amino-1,1-diphenylethanol-based boronate–imine and amine complexes. Beilstein J. Org. Chem. 7, 615–621 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jimenez, V. G. et al. Circularly polarized luminescence of boronic acid-derived salicylidenehydrazone complexes containing chiral boron as stereogenic unit. J. Org. Chem. 83, 14057–14062 (2018).

    CAS  PubMed  Google Scholar 

  30. Aupic, C. et al. Highly diastereoselective preparation of chiral NHC-boranes stereogenic at the boron atom. Chem. Sci. 10, 6524–6530 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zu, B., Guo, Y. & He, C. Catalytic enantioselective construction of chiroptical boron-stereogenic compounds. J. Am. Chem. Soc. 143, 16302–16310 (2021).

    CAS  PubMed  Google Scholar 

  32. Zhang, G. et al. Construction of boron-stereogenic compounds via enantioselective Cu-catalyzed desymmetric B–H bond insertion reaction. Nat. Commun. 13, 2624 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Courtis, A. M. et al. Monoalkoxy BODIPYs—a fluorophore class for bioimaging. Bioconjugate Chem. 25, 1043–1051 (2014).

    CAS  Google Scholar 

  34. Umeda, N. et al. Boron dipyrromethene as a fluorescent caging group for single-photon uncaging with long-wavelength visible light. ACS Chem. Biol. 9, 2242–2246 (2014).

    CAS  PubMed  Google Scholar 

  35. Sharma, A. K. et al. Visible-light-triggered uncaging of carbonyl sulfide for hydrogen sulfide (H2S) release. Org. Lett. 19, 4822–4825 (2017).

    CAS  PubMed  Google Scholar 

  36. Lu, H., Mack, J., Yang, Y. & Shen, Z. Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem. Soc. Rev. 43, 4778–4823 (2014).

    CAS  PubMed  Google Scholar 

  37. Ikeda, C., Maruyama, T. & Nabeshima, T. Convenient and highly efficient synthesis of boron-dipyrrins bearing an arylboronate center. Tetrahedron Lett. 50, 3349–3351 (2009).

    CAS  Google Scholar 

  38. Chen, N. et al. Sterically protected N2O-type benzopyrromethene boron complexes from boronic acids with intense red/near-infrared fluorescence. Org. Lett. 19, 2026–2029 (2017).

    CAS  PubMed  Google Scholar 

  39. Liu, Y. et al. Synthesis of N,O,B-chelated dipyrromethenes through an unexpected intramolecular cyclisation: enhanced near-infrared emission in the aggregate/solid state. Chem. Eur. J. 24, 13549–13555 (2018).

    CAS  PubMed  Google Scholar 

  40. Saget, T. & Cramer, N. Enantioselective C–H arylation strategy for functionalized dibenzazepinones with quaternary stereocenters. Angew. Chem. Int. Ed. 52, 7865–7868 (2013).

    CAS  Google Scholar 

  41. Lin, Z. Q., Wang, W. Z., Yan, S. B. & Duan, W. L. Palladium-catalyzed enantioselective C-H arylation for the synthesis of P-stereogenic compounds. Angew. Chem. Int. Ed. 54, 6265–6269 (2015).

    CAS  Google Scholar 

  42. Liu, L. et al. Asymmetric synthesis of P-stereogenic phosphinic amides via Pd(0)-catalyzed enantioselective intramolecular C–H arylation. Org. Lett. 17, 2046–2049 (2015).

    CAS  PubMed  Google Scholar 

  43. Yang, L., Neuburger, M. & Baudoin, O. Chiral bifunctional phosphine-carboxylate ligands for palladium(0)-catalyzed enantioselective C–H arylation. Angew. Chem. Int. Ed. 57, 1394–1398 (2018).

    CAS  Google Scholar 

  44. Vyhivskyi, O., Kudashev, A., Miyakoshi, T. & Baudoin, O. Chiral catalysts for Pd(0)-catalyzed enantioselective C–H activation. Chem. Eur. J. 27, 1231–1257 (2021).

    CAS  PubMed  Google Scholar 

  45. Falivene, L. et al. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics 35, 2286–2293 (2016).

    CAS  Google Scholar 

  46. Falivene, L. et al. Towards the online computer-aided design of catalytic pockets. Nat. Chem. 11, 872–879 (2019).

    CAS  PubMed  Google Scholar 

  47. Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction–activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    CAS  Google Scholar 

  48. Ess, D. H. & Houk, K. N. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models. J. Am. Chem. Soc. 130, 10187–10198 (2008).

    CAS  PubMed  Google Scholar 

  49. Kowada, T., Maeda, H. & Kikuchi, K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 44, 4953–4972 (2015).

    CAS  PubMed  Google Scholar 

  50. Pu, L. Simultaneous determination of concentration and enantiomeric composition in fluorescent sensing. Acc. Chem. Res. 50, 1032–1040 (2017).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (22122102, 22101120, 22271134), the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), the Shenzhen Science and Technology Innovation Committee (JCYJ20190809142809370) and the Stable Support Plan Program of Shenzhen Natural Science Fund (contract number 20200925152450004).

Author information

Authors and Affiliations

Authors

Contributions

B.Z., Y.G. and C.H. conceived the project. B.Z., Y.G. and L.-Q.R. designed and performed the synthetic experiments. Y.L. designed and performed the computational studies. B.Z., Y.G., Y.L. and C.H. prepared the manuscript.

Corresponding authors

Correspondence to Yingzi Li or Chuan He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks José Alemán, Hua Lu, Jolene Reid and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, supplementary sections 1–16, figs. 1–15 and tables 1–7.

Supplementary Data 1

Crystallographic data for compound 2w, CCDC 2175350.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 3

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, B., Guo, Y., Ren, LQ. et al. Catalytic enantioselective synthesis of boron-stereogenic BODIPYs. Nat. Synth 2, 564–571 (2023). https://doi.org/10.1038/s44160-023-00262-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00262-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing