Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling

Abstract

The Michaelis–Becker reaction of H-phosphonates with alkyl halides represents an ideal means for synthesizing alkyl phosphorous compounds. However, the enantioconvergent conversion of racemic alkyl halides into α-chiral alkyl phosphorous compounds in this reaction is an insurmountable challenge because of the inherent SN2 mechanism. Here we disclose a copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling. Key to the success of this reaction is the use of multidentate chiral anionic ligands for enhancing the reducing capability of the copper catalyst to favour a stereoablative radical pathway over a stereospecific SN2-type process. Moreover, the ligand architecture is also able to assist the robust association of copper species with alkyl radicals over H-phosphonates, therefore exerting remarkable chemo- and enantioselectivity. This protocol covers a range of (hetero)benzyl-, propargyl- and α-aminocarbonyl alkyl bromides and chlorides. When allied with follow-up transformations, this method provides a versatile platform for valuable α-chiral alkyl phosphorous building blocks and drug leads.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Motivation and design of copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling.
Fig. 2: Synthetic utility and mechanistic discussion.

Similar content being viewed by others

Data availability

Data relating to the materials and methods, optimization studies, experimental procedures, mechanistic studies, HPLC spectra, NMR spectra and high-resolution mass spectrometry data are available in the Supplementary Information.

References

  1. Montchamp, J.-L. (ed.) Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds (Springer, 2015).

  2. Tang, W. & Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 103, 3029–3069 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Ed. 49, 2486–2528 (2010).

    Article  CAS  Google Scholar 

  4. Xie, J.-H., Zhu, S.-F. & Zhou, Q.-L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem. Rev. 111, 1713–1760 (2011).

    Article  CAS  PubMed  Google Scholar 

  5. Fernández-Pérez, H., Etayo, P., Panossian, A. & Vidal-Ferran, A. Phosphine–phosphinite and phosphine–phosphite ligands: preparation and applications in asymmetric catalysis. Chem. Rev. 111, 2119–2176 (2011).

    Article  PubMed  Google Scholar 

  6. Ni, H., Chan, W.-L. & Lu, Y. Phosphine-catalyzed asymmetric organic reactions. Chem. Rev. 118, 9344–9411 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Guo, H., Fan, Y. C., Sun, Z., Wu, Y. & Kwon, O. Phosphine organocatalysis. Chem. Rev. 118, 10049–10293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu, G., Senanayake, C. H. & Tang, W. P-chiral phosphorus ligands based on a 2,3-dihydrobenzo[d][1,3]oxaphosphole motif for asymmetric catalysis. Acc. Chem. Res. 52, 1101–1112 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez, J. B. & Gallo-Rodriguez, C. The role of the phosphorus atom in drug design. ChemMedChem 14, 190–216 (2019).

    CAS  PubMed  Google Scholar 

  10. Kurz, T. et al. Synthesis and antimalarial activity of chain substituted pivaloyloxymethyl ester analogues of fosmidomycin and FR900098. Bioorg. Med. Chem. 14, 5121–5135 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Andaloussi, M. et al. Design, synthesis, and X-ray crystallographic studies of α-aryl substituted fosmidomycin analogues as inhibitors of Mycobacterium tuberculosis 1-deoxy-d-xylulose 5-phosphate reductoisomerase. J. Med. Chem. 54, 4964–4976 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Jansson, A. M. et al. DXR inhibition by potent mono- and disubstituted fosmidomycin analogues. J. Med. Chem. 56, 6190–6199 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Glueck, D. S. Catalytic asymmetric synthesis of chiral phosphanes. Chem. Eur. J. 14, 7108–7117 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Albrecht, Ł., Albrecht, A., Krawczyk, H. & Jørgensen, K. A. Organocatalytic asymmetric synthesis of organophosphorus compounds. Chem. Eur. J. 16, 28–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Tappe, F. M. J., Trepohl, V. T. & Oestreich, M. Transition-metal-catalyzed C–P cross-coupling reactions. Synthesis 2010, 3037–3062 (2010).

    Article  Google Scholar 

  16. Zhao, D. & Wang, R. Recent developments in metal catalyzed asymmetric addition of phosphorus nucleophiles. Chem. Soc. Rev. 41, 2095–2108 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Feng, J.-J., Chen, X.-F., Shi, M. & Duan, W.-L. Palladium-catalyzed asymmetric addition of diarylphosphines to enones toward the synthesis of chiral phosphines. J. Am. Chem. Soc. 132, 5562–5563 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen, M., Jacobsen, C. B. & Jørgensen, K. A. Asymmetric organocatalytic electrophilic phosphination. Angew. Chem. Int. Ed. 50, 3211–3214 (2011).

    Article  CAS  Google Scholar 

  19. Yin, L., Bao, Y., Kumagai, N. & Shibasaki, M. Catalytic asymmetric hydrophosphonylation of ketimines. J. Am. Chem. Soc. 135, 10338–10341 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Nie, S.-Z., Davison, R. T. & Dong, V. M. Enantioselective coupling of dienes and phosphine oxides. J. Am. Chem. Soc. 140, 16450–16454 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, Y.-B., Tian, H. & Yin, L. Copper(I)-catalyzed asymmetric 1,4-conjugate hydrophosphination of α,β-unsaturated amides. J. Am. Chem. Soc. 142, 20098–20106 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Yue, W.-J., Xiao, J.-Z., Zhang, S. & Yin, L. Rapid synthesis of chiral 1,2-bisphosphine derivatives through copper(I)-catalyzed asymmetric conjugate hydrophosphination. Angew. Chem. Int. Ed. 59, 7057–7062 (2020).

    Article  CAS  Google Scholar 

  23. Chen, Y. et al. Asymmetric construction of tertiary/secondary carbon–phosphorus bonds via bifunctional phosphonium salt catalyzed 1,6-addition. ACS Catal. 11, 14168–14180 (2021).

    Article  CAS  Google Scholar 

  24. Maiti, R. et al. Carbene-catalyzed enantioselective hydrophosphination of α-bromoenals to prepare phosphine-containing chiral molecules. Angew. Chem. Int. Ed. 60, 26616–26621 (2021).

    Article  CAS  Google Scholar 

  25. Butti, P., Rochat, R., Sadow, A. D. & Togni, A. Palladium-catalyzed enantioselective allylic phosphination. Angew. Chem. Int. Ed. 47, 4878–4881 (2008).

    Article  CAS  Google Scholar 

  26. Zhang, L., Liu, W. & Zhao, X. Carbon–phosphorus bond formation by enantioselective palladium-catalyzed allylation of diphenylphosphine oxide. Eur. J. Org. Chem. 2014, 6846–6849 (2014).

    Article  CAS  Google Scholar 

  27. Liu, S., Tanabe, Y., Kuriyama, S., Sakata, K. & Nishibayashi, Y. Ruthenium-catalyzed enantioselective propargylic phosphinylation of propargylic alcohols with phosphine oxides. Angew. Chem. Int. Ed. 60, 11231–11236 (2021).

    Article  CAS  Google Scholar 

  28. Li, B., Liu, M., Rehman, S. U. & Li, C. Rh-catalyzed regio- and enantioselective allylic phosphinylation. J. Am. Chem. Soc. 144, 2893–2898 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Michaelis, A. & Becker, T. The structure of phosphorous acid. Chem. Ber. 30, 1003–1009 (1897).

    CAS  Google Scholar 

  30. Bhattacharya, A. K. & Thyagarajan, G. The Michaelis–Arbuzov rearrangement. Chem. Rev. 81, 415–430 (1981).

    Article  CAS  Google Scholar 

  31. Demmer, C. S., Krogsgaard-Larsen, N. & Bunch, L. Review on modern advances of chemical methods for the introduction of a phosphonic acid group. Chem. Rev. 111, 7981–8006 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhang, X. & Tan, C.-H. Stereospecific and stereoconvergent nucleophilic substitution reactions at tertiary carbon centers. Chem 7, 1451–1486 (2021).

    Article  CAS  Google Scholar 

  34. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fu, G. C. Transition-metal catalysis of nucleophilic substitution reactions: a radical alternative to SN1 and SN2 processes. ACS Cent. Sci. 3, 692–700 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Choi, J. & Fu, G. C. Transition metal–catalyzed alkyl-alkyl bond formation: Another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3295 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Nicewicz, D. A. & MacMillan, D. W. C. Merging photoredox catalysis with organocatalysis: the direct asymmetric alkylation of aldehydes. Science 322, 77–80 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Du, J., Skubi, K. L., Schultz, D. M. & Yoon, T. P. A dual-catalysis approach to enantioselective [2 + 2] photocycloadditions using visible light. Science 344, 392–396 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huo, H. et al. Asymmetric photoredox transition-metal catalysis activated by visible light. Nature 515, 100–103 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Hashimoto, T., Kawamata, Y. & Maruoka, K. An organic thiyl radical catalyst for enantioselective cyclization. Nat. Chem. 6, 702–705 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Brimioulle, R., Lenhart, D., Maturi, M. M. & Bach, T. Enantioselective catalysis of photochemical reactions. Angew. Chem. Int. Ed. 54, 3872–3890 (2015).

    Article  CAS  Google Scholar 

  44. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature 532, 218–222 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Kern, N., Plesniak, M. P., McDouall, J. J. W. & Procter, D. J. Enantioselective cyclizations and cyclization cascades of samarium ketyl radicals. Nat. Chem. 9, 1198–1204 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, Y., Wen, X., Cui, X., Wojtas, L. & Zhang, X. P. Asymmetric radical cyclopropanation of alkenes with in situ-generated donor-substituted diazo reagents via Co(II)-based metalloradical catalysis. J. Am. Chem. Soc. 139, 1049–1052 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    Article  CAS  PubMed  Google Scholar 

  50. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang, Y., Cho, I., Qi, X., Liu, P. & Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)–H bonds. Nat. Chem. 11, 987–993 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nakafuku, K. M. et al. Enantioselective radical C–H amination for the synthesis of β-amino alcohols. Nat. Chem. 12, 697–704 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhou, H., Li, Z.-L., Gu, Q.-S. & Liu, X.-Y. Ligand-enabled copper(I)-catalyzed asymmetric radical C(sp3)–C cross-coupling reactions. ACS Catal. 11, 7978–7986 (2021).

    Article  CAS  Google Scholar 

  55. Gu, Q.-S., Li, Z.-L. & Liu, X.-Y. Copper(I)-catalyzed asymmetric reactions involving radicals. Acc. Chem. Res. 53, 170–181 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Zhang, C., Li, Z.-L., Gu, Q.-S. & Liu, X.-Y. Catalytic enantioselective C(sp3)-H functionalization involving radical intermediates. Nat. Commun. 12, 475 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Dong, X.-Y. et al. A general asymmetric copper-catalysed sonogashira C(sp3)–C(sp) coupling. Nat. Chem. 11, 1158–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Jiang, S.-P. et al. Copper-catalyzed enantioconvergent radical Suzuki–Miyaura C(sp3)–C(sp2) cross-coupling. J. Am. Chem. Soc. 142, 19652–19659 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Su, X.-L. et al. Copper-catalyzed enantioconvergent cross-coupling of racemic alkyl bromides with azole C(sp2)–H bonds. Angew. Chem. Int. Ed. 60, 380–384 (2021).

    Article  CAS  Google Scholar 

  60. Zhang, Y.-F. et al. Enantioconvergent Cu-catalyzed radical C–N coupling of racemic secondary alkyl halides to access α-chiral primary amines. J. Am. Chem. Soc. 143, 15413–15419 (2021).

    Article  CAS  PubMed  Google Scholar 

  61. Wang, P.-F. et al. Design of hemilabile N,N,N-ligands in copper-catalyzed enantioconvergent radical cross-coupling of benzyl/propargyl halides with alkenylboronate esters. J. Am. Chem. Soc. 144, 6442–6452 (2022).

    Article  CAS  PubMed  Google Scholar 

  62. Wang, F.-L. et al. Mechanism-based ligand design for copper-catalysed enantioconvergent C(sp3)–C(sp) cross-coupling of tertiary electrophiles with alkynes. Nat. Chem. 14, 949–957 (2022).

    Article  CAS  PubMed  Google Scholar 

  63. Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chen, C., Peters, J. C. & Fu, G. C. Photoinduced copper-catalysed asymmetric amidation via ligand cooperativity. Nature 596, 250–256 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lee, H. et al. Investigation of the C–N bond-forming step in a photoinduced, copper-catalyzed enantioconvergent N-alkylation: characterization and application of a stabilized organic radical as a mechanistic probe. J. Am. Chem. Soc. 144, 4114–4123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cho, H., Suematsu, H., Oyala, P. H., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed enantioconvergent alkylations of anilines by racemic tertiary electrophiles: synthesis and mechanism. J. Am. Chem. Soc. 144, 4550–4558 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sutra, P. & Igau, A. Anionic phosph(in)ito (‘phosphoryl’) ligands: non-classical ‘actor’ phosphane-type ligands in coordination chemistry. Coord. Chem. Rev. 308, 97–116 (2016).

    Article  CAS  Google Scholar 

  68. Zhou, Y. et al. Selective P–P and P–O–P bond formations through copper-catalyzed aerobic oxidative dehydrogenative couplings of H-phosphonates. Angew. Chem. Int. Ed. 49, 6852–6855 (2010).

    Article  CAS  Google Scholar 

  69. Strotman, N. A., Sommer, S. & Fu, G. C. Hiyama reactions of activated and unactivated secondary alkyl halides catalyzed by a nickel/norephedrine complex. Angew. Chem. Int. Ed. 46, 3556–3558 (2007).

    Article  CAS  Google Scholar 

  70. He, S.-J. et al. Nickel-catalyzed enantioconvergent reductive hydroalkylation of olefins with α-heteroatom phosphorus or sulfur alkyl electrophiles. J. Am. Chem. Soc. 142, 214–221 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Wang, H., Zheng, P., Wu, X., Li, Y. & Xu, T. Modular and facile access to chiral α-aryl phosphates via dual nickel- and photoredox-catalyzed reductive cross-coupling. J. Am. Chem. Soc. 144, 3989–3997 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Sladojevich, F., Trabocchi, A., Guarna, A. & Dixon, D. J. A new family of cinchona-derived amino phosphine precatalysts: application to the highly enantio- and diastereoselective silver-catalyzed isocyanoacetate aldol reaction. J. Am. Chem. Soc. 133, 1710–1713 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Wang, D.-Y. et al. Enantioselective synthesis of chiral α-aryl or α-alkyl substituted ethylphosphonates via Rh-catalyzed asymmetric hydrogenation with a P-stereogenic BoPhoz-type ligand. J. Org. Chem. 74, 4408–4410 (2009).

    Article  CAS  PubMed  Google Scholar 

  74. Lauder, K., Toscani, A., Scalacci, N. & Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev. 117, 14091–14200 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. Gao, X., Xiao, Y.-L., Zhang, S., Wu, J. & Zhang, X. Copper-catalyzed enantioselective trifluoromethylthiolation of secondary propargyl sulfonates. CCS Chem 2, 1463–1471 (2020).

    Google Scholar 

  76. Greco, M. N. et al. Discovery of potent, selective, orally active, nonpeptide inhibitors of human mast cell chymase. J. Med. Chem. 50, 1727–1730 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Maerten, E., Cabrera, S., Kjaersgaard, A. & Jørgensen, K. A. Organocatalytic asymmetric direct phosphonylation of α,β-unsaturated aldehydes: mechanism, scope, and application in synthesis. J. Org. Chem. 72, 8893–8903 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. Cheruku, P., Paptchikhine, A., Church, T. L. & Andersson, P. G. Iridium-N,P-ligand-catalyzed enantioselective hydrogenation of diphenylvinylphosphine oxides and vinylphosphonates. J. Am. Chem. Soc. 131, 8285–8289 (2009).

    Article  CAS  PubMed  Google Scholar 

  79. Dong, K., Wang, Z. & Ding, K. Rh(I)-catalyzed enantioselective hydrogenation of α-substituted ethenylphosphonic acids. J. Am. Chem. Soc. 134, 12474–12477 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the National Key R&D Program of China (2021YFF0701604 and 2021YFF0701704, X.-Y.L.), the National Natural Science Foundation of China (22025103 and 21831002, X.-Y.L.), the Guangdong Innovative Program (2019BT02Y335, X.-Y.L.), the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002, X.-Y.L.), the Shenzhen Science and Technology Program (KQTD20210811090112004, X.-Y.L.) and Shenzhen Special Funds (JCYJ20200109141001789, X.-Y.L.) for financial support. We thank the SUSTech Core Research Facilities for assistance with compound characterization.

Author information

Authors and Affiliations

Authors

Contributions

X.-Y.L. conceived and supervised the project. L.-L.W., H.Z., Y.-X.C., C.Z., Y.-Q.R., Z.-L.L. and Q.-S.G. designed and performed the experiments and analysed the data. X.-Y.L., and L.-L.W. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xin-Yuan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Wei-Liang Duan, Choon-Hong Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Tables 1–9 and Figs. 1 and 2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LL., Zhou, H., Cao, YX. et al. A general copper-catalysed enantioconvergent radical Michaelis–Becker-type C(sp3)–P cross-coupling. Nat. Synth 2, 430–438 (2023). https://doi.org/10.1038/s44160-023-00252-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00252-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing