Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alkyne synthesis through coupling of gem-diborylalkanes with carboxylic acid esters

Abstract

Alkynes are fundamental molecular building blocks of great importance in synthetic chemistry and materials science. The efficient construction of alkynyl functionality from widely accessible functional groups is therefore highly valuable. Here we report the development of a modular synthesis of alkynes through reaction of carboxylic esters with lithiated gem-diborylalkanes and aryl triflimides. 1H, 13C and 11B NMR spectroscopic and X-ray crystallographic analyses identify and characterize an intermediate α-boryl lithium enolate, which upon triflation with an aryl triflimide followed by water quenching generates the alkyne product. The developed strategy allows a range of carboxylic acid esters to be converted into both internal and terminal alkynes, within a short reaction time, including the transformation of chiral α-substituted esters into chiral propargyl compounds without racemization. The method has been applied to the synthesis of 13C-labelled alkynes, using 13C-labelled gem-diborylmethane and 13C-labelled carboxylic esters, which enables access to 13C-labelled terminal alkyne fragments in drugs and natural products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modular synthesis of alkynes by coupling carboxylates with gem-diborylalkanes.
Fig. 2: 13C-labelling investigations and reaction mixture analysis.
Fig. 3: Chemoselectivity investigations for the alkynylation of multi-esters.
Fig. 4: Follow-up synthesis of the alkyne products.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information. Solid-state structure of I-B is freely available from the Cambridge Crystallographic Data Centre under the associated CCDC codes: 2183417.

References

  1. Knochel, P. & Molander, G. A. Comprehensive Organic Synthesis 2nd edn (Elsevier, 2014).

  2. Olah, G. A., Molnár, Á. & Prakash, G. K. S. Hydrocarbon Chemistry 3rd edn (John Wiley, 2017).

  3. Trost, B. M. & Li, C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations (Wiley-VCH, 2014).

  4. Hopf, H. Science of Synthesis Vol. 43 (Thieme Chemistry, 2008).

  5. Lehmann, J., Wright, M. H. & Sieber, S. A. Making a long journey short: alkyne functionalization of natural product scaffolds. Chem. Eur. J. 22, 4666–4678 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Steins, M., Thomas, M. & Geißler, M. in Small Molecules in Oncology (ed. Martens, U. M.) 1–17 (Springer, 2018).

  7. Brunner, H. Narcotic drug methohexital: synthesis by enantioselective catalysis. Chirality 13, 420–424 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Madar, D. J. et al.Discovery of 2-[4-{{2-(2S,5R)-2-Cyano-5-ethynyl-1-pyrrolidinyl]-2-oxoethyl]amino]-4-methyl-1-piperidinyl]-4-pyridinecarboxylic acid (ABT-279): a very potent, selective, effective, and well-tolerated inhibitor of dipeptidyl peptidase-IV, useful for the treatment of diabetes. J. Med. Chem. 49, 6416–6420 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Thirumurugan, P., Matosiuk, D. & Jozwiak, K. Click chemistry for drug development and diverse chemical–biology applications. Chem. Rev. 113, 4905–4979 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Parker, C. G. & Pratt, M. R. Click chemistry in proteomic investigations. Cell 180, 605–632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bi, X., Miao, K. & Wei, L. Alkyne-tagged Raman probes for local environmental sensing by hydrogen–deuterium exchange. J. Am. Chem. Soc. 144, 8504–8514 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Lam, J., Breteler, H., Arnason, T. & Hansen, L. Chemistry and Biology of Naturally-Occurring Acetylenes and Related Compounds (Elsevier, 1988).

  13. Chinchilla, R. & Nájera, C. The Sonogashira reaction: a booming methodology in synthetic organic chemistry. Chem. Rev. 107, 874–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Chinchilla, R. & Nájera, C. Recent advances in Sonogashira reactions. Chem. Soc. Rev. 40, 5084–5121 (2011).

    Article  CAS  PubMed  Google Scholar 

  15. Fürstner, A. Alkyne metathesis on the rise. Angew. Chem. Int. Ed. 52, 2794–2819 (2013).

    Article  Google Scholar 

  16. Habrant, D., Rauhala, V. & Koskinen, A. M. P. Conversion of carbonyl compounds to alkynes: general overview and recent developments. Chem. Soc. Rev. 39, 2007–2017 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Shaw, R., Elagamy, A., Althagafi, I. & Pratap, R. Synthesis of alkynes from non-alkyne sources. Org. Biomol. Chem. 18, 3797–3817 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Lyapkalo, I. M., Vogel, M. A. K., Boltukhina, E. V. & Vavřík, J. Thieme Chemistry Journal awardees—where are they now? A general one-step synthesis of alkynes from enolisable carbonyl compounds. Synlett 2009, 558–561 (2009).

    Article  Google Scholar 

  19. Zha, G.-F. et al. SO2F2-mediated oxidative dehydrogenation and dehydration of alcohols to alkynes. J. Am. Chem. Soc. 140, 17666–17673 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Fleming, I. & Ramarao, C. Decarboxylative elimination of enol triflates as a general synthesis of acetylenes. Chem. Commun. 1113-1114 (1999).

  21. Katritzky, A. R., Wang, J., Karodia, N. & Li, J. A novel transformation of esters to alkynes with 1-substituted benzotriazoles. J. Org. Chem. 62, 4142–4147 (1997).

    Article  CAS  Google Scholar 

  22. Eymery, F., Iorga, B. & Savignac, P. The usefulness of phosphorus compounds in alkyne synthesis. Synthesis 2000, 185–213 (2000).

    Article  Google Scholar 

  23. Yang, K. & Song, Q. Tetracoordinate boron intermediates enable unconventional transformations. Acc. Chem. Res. 54, 2298–2312 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Taniguchi, T. Substituent effects of tetracoordinate boron in organic synthesis. Chem. Eur. J. 28, e202104333 (2022).

    CAS  PubMed  Google Scholar 

  25. Shi, D., Xia, C. & Liu, C. Photoinduced transition-metal-free alkynylation of alkyl pinacol boronates. CCS Chem. 3, 1718–1728 (2021).

    Article  CAS  Google Scholar 

  26. Sumida, Y., Kato, T. & Hosoya, T. Generation of arynes via ate complexes of arylboronic esters with an ortho-leaving group. Org. Lett. 15, 2806–2809 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Sun, W., Wang, L., Xia, C. & Liu, C. Dual functionalization of α-monoboryl carbanions through deoxygenative enolization with carboxylic acids. Angew. Chem. Int. Ed. 57, 5501–5505 (2018).

    Article  CAS  Google Scholar 

  28. Sun, W. et al. Chemodivergent transformations of amides using gem-diborylalkanes as pro-nucleophiles. Nat. Commun. 11, 3113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, B. & Chirik, P. J. Ketone synthesis from benzyldiboronates and esters: leveraging α-boryl carbanions for carbon–carbon bond formation. J. Am. Chem. Soc. 142, 2429–2437 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mukaiyama, T., Murakami, M., Oriyama, T. & Yamaguchi, M. A new aldol reaction: a method for the generation of vinyloxyboranes by the acylation of boron-stabilized carbanions. Chem. Lett. 10, 1193–1196 (1981).

    Article  Google Scholar 

  31. Matteson, D. S. & Moody, R. J. Carbanions from deprotonation of gem-diboronic esters. J. Am. Chem. Soc. 99, 3196–3197 (1977).

    Article  CAS  Google Scholar 

  32. Iacono, C. E., Stephens, T. C., Rajan, T. S. & Pattison, G. A coupling approach for the generation of α,α-bis(enolate) equivalents: regioselective synthesis of gem-difunctionalized ketones. J. Am. Chem. Soc. 140, 2036–2040 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Shi, D., Wang, L., Xia, C. & Liu, C. Synthesis of secondary and tertiary alkyl boronic esters by gem-carboborylation: carbonyl compounds as bis(electrophile) equivalents. Angew. Chem. Int. Ed. 57, 10318–10322 (2018).

    Article  CAS  Google Scholar 

  34. Lee, Y., Han, S. & Cho, S. H. Catalytic chemo- and enantioselective transformations of gem-diborylalkanes and (diborylmethyl)metallic species. Acc. Chem. Res. 54, 3917–3929 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Miralles, N., Maza, R. J. & Fernández, E. Synthesis and reactivity of 1,1-diborylalkanes towards C–C bond formation and related mechanisms. Adv. Synth. Catal. 360, 1306–1327 (2018).

    Article  CAS  Google Scholar 

  36. Wu, C. & Wang, J. Geminal bis(boron) compounds: their preparation and synthetic applications. Tetrahedron Lett. 59, 2128–2140 (2018).

    Article  CAS  Google Scholar 

  37. Nallagonda, R., Padala, K. & Masarwa, A. gem-Diborylalkanes: recent advances in their preparation, transformation and application. Org. Biomol. Chem. 16, 1050–1064 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Nallagonda, R. et al. in Patai’s Chemistry of Functional Groups 1–72 (Wiley, 2020).

  39. Wang, L. et al. C–O functionalization of α-oxyboronates: a deoxygenative gem-diborylation and gem-silylborylation of aldehydes and ketones. J. Am. Chem. Soc. 139, 5257–5264 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. He, Z. et al. Cooperation between an alcoholic proton and boryl species in the catalytic gem-hydrodiborylation of carboxylic esters to access 1,1-diborylalkanes. Org. Chem. Front. 6, 900–907 (2019).

    Article  CAS  Google Scholar 

  41. Li, H. et al. Formal carbon insertion of N-tosylhydrazone into B–B and B–Si bonds: gem-diborylation and gem-silylborylation of sp3 carbon. Org. Lett. 16, 448–451 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Palmer, W. N., Obligacion, J. V., Pappas, I. & Chirik, P. J. Cobalt-catalyzed benzylic borylation: enabling polyborylation and functionalization of remote, unactivated C(sp3)–H bonds. J. Am. Chem. Soc. 138, 766–769 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Li, L., Gong, T., Lu, X., Xiao, B. & Fu, Y. Nickel-catalyzed synthesis of 1,1-diborylalkanes from terminal alkenes. Nat. Commun. 8, 345 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Teo, W. J. & Ge, S. Cobalt-catalyzed diborylation of 1,1-disubstituted vinylarenes: a practical route to branched gem-bis(boryl)alkanes. Angew. Chem. Int. Ed. 57, 1654–1658 (2018).

    Article  CAS  Google Scholar 

  45. Wang, X. et al. Zirconium-catalyzed atom-economical synthesis of 1,1-diborylalkanes from terminal and internal alkenes. Angew. Chem. Int. Ed. 59, 13608–13612 (2020).

    Article  CAS  Google Scholar 

  46. Docherty, J. H., Nicholson, K., Dominey, A. P. & Thomas, S. P. A boron–boron double transborylation strategy for the synthesis of gem-diborylalkanes. ACS Catal. 10, 4686–4691 (2020).

    Article  CAS  Google Scholar 

  47. Lee, H., Lee, Y. & Cho, S. H. Palladium-catalyzed chemoselective Negishi cross-coupling of bis[(pinacolato)boryl]methylzinc halides with aryl (pseudo)halides. Org. Lett. 21, 5912–5916 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Kumar, N., Eghbarieh, N., Stein, T., Shames, A. I. & Masarwa, A. Photoredox-mediated reaction of gem-diborylalkenes: reactivity toward diverse 1,1-bisborylalkanes. Chem. Eur. J. 26, 5360–5364 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Endo, K., Hirokami, M. & Shibata, T. Synthesis of 1,1-organodiboronates via Rh(I)Cl-catalyzed sequential regioselective hydroboration of 1-alkynes. Synlett 2009, 1331–1335 (2009).

    Article  Google Scholar 

  50. Lee, J. C. H., McDonald, R. & Hall, D. G. Enantioselective preparation and chemoselective cross-coupling of 1,1-diboron compounds. Nat. Chem. 3, 894–899 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Chassaing, S., Specklin, S., Weibel, J.-M. & Pale, P. Vinyl and aryl sulfonates: preparations and applications in total synthesis. Curr. Org. Synth. 9, 806–827 (2012).

    Article  CAS  Google Scholar 

  52. Elmore, C. S. in Annual Reports in Medicinal Chemistry Vol. 44 (ed. Macor, J. E.) 515–534 (Academic Press, 2009).

  53. Wang, Z. J. et al. Hyperpolarized 13C MRI: state of the art and future directions. Radiology 291, 273–284 (2019).

    Article  PubMed  Google Scholar 

  54. Dale, H. J. A., Nottingham, C., Poree, C. & Lloyd-Jones, G. C. Systematic evaluation of 1,2-migratory aptitude in alkylidene carbenes. J. Am. Chem. Soc. 143, 2097–2107 (2021).

    Article  CAS  PubMed  Google Scholar 

  55. Masui, Y., Hattori, T. & Onaka, M. Reversible generation of labile secondary carbocations from alcohols in the nanospace of H-mordenite and their long-lasting preservation at ambient temperature. J. Am. Chem. Soc. 139, 8612–8620 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Lahann, J. Click Chemistry for Biotechnology and Materials Science (Wiley, 2009).

  57. Lee, Y., Park, J. & Cho, S. H. Generation and application of (diborylmethyl)zinc(II) species: access to enantioenriched gem-diborylalkanes by an asymmetric allylic substitution. Angew. Chem. Int. Ed. 57, 12930–12934 (2018).

    Article  CAS  Google Scholar 

  58. Konno, T. Trifluoromethylated internal alkynes: versatile building blocks for the preparation of various fluorine-containing molecules. Synlett 25, 1350–1370 (2014).

    Article  Google Scholar 

  59. Zhou, Y., Zhang, Y. & Wang, J. Recent advances in transition-metal-catalyzed synthesis of conjugated enynes. Org. Biomol. Chem. 14, 6638–6650 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Dickson, H. D., Smith, S. C. & Hinkle, K. W. A convenient scalable one-pot conversion of esters and Weinreb amides to terminal alkynes. Tetrahedron Lett. 45, 5597–5599 (2004).

    Article  CAS  Google Scholar 

  61. Stephens, T. C. & Pattison, G. Transition-metal-free homologative cross-coupling of aldehydes and ketones with geminal bis(boron) compounds. Org. Lett. 19, 3498–3501 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Liu, J., Lam, J. W. & Tang, B. Z. Acetylenic polymers: syntheses, structures, and functions. Chem. Rev. 109, 5799–5867 (2009).

    Article  CAS  PubMed  Google Scholar 

  63. McCormick, K. D. et al. Preparation of imidazolylmethylbenzoxazines and related compounds as α2c adrenoreceptor agonists. US patent 20080039439 (2008).

  64. Zhu, M. & Messaoudi, S. Diastereoselective decarboxylative alkynylation of anomeric carboxylic acids using Cu/photoredox dual catalysis. ACS Catal. 11, 6334–6342 (2021).

    Article  CAS  Google Scholar 

  65. Liu, X., Ming, W., Zhang, Y., Friedrich, A. & Marder, T. B. Copper-catalyzed triboration: straightforward. atom-economical synthesis of 1,1,1-triborylalkanes from terminal alkynes and HBpin. Angew. Chem. Int. Ed. 58, 18923–18927 (2019).

    Article  CAS  Google Scholar 

  66. Matuszewski, M., Kiliszek, A., Rypniewski, W., Lesnikowski, Z. J. & Olejniczak, A. B. Nucleoside bearing boron clusters and their phosphoramidites—building blocks for modified oligonucleotide synthesis. New J. Chem. 39, 1202–1221 (2015).

    Article  CAS  Google Scholar 

  67. Tietze, L. F. et al. Novel carboranyl C-glycosides for the treatment of cancer by boron neutron capture therapy. Chem. Eur. J. 9, 1296–1302 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Valliant, J. F. et al. The medicinal chemistry of carboranes. Coord. Chem. Rev. 232, 173–230 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (number 22022113 to C.L.) and the Natural Science Foundation of Jiangsu Province (number BK20190002 to C.L.) for financial support. We also thank J. Song and K. Xiao (NJUPT) for assistance with the crystal structure analysis.

Author information

Authors and Affiliations

Authors

Contributions

W.S. and L.X. conducted the experiments and collected data. Y.Q. helped to collect some data. C.L. directed the project and wrote the manuscript with input from all authors. All authors analysed the results and commented on the manuscript.

Corresponding author

Correspondence to Chao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Ahmad Masarwa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary sections 1–3, Figs. 1–5 and Tables 1 and 2.

Supplementary Data 1

Crystallographic data for compound I-B; CCDC 2183417.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Xu, L., Qin, Y. et al. Alkyne synthesis through coupling of gem-diborylalkanes with carboxylic acid esters. Nat. Synth 2, 413–422 (2023). https://doi.org/10.1038/s44160-023-00243-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-023-00243-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing