Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling

Abstract

Aryl C-glycosides are an important class of carbohydrate derivatives, with widespread application in drug development, biochemistry and material sciences. However, their synthesis usually requires extensively protected intermediates and the use of sensitive reagents, which presents significant practical challenges. In this study, we report a direct and stereoselective cross-coupling approach to prepare unprotected aryl C-glycosides from bench-stable starting materials. The transformation uses allyl glycosyl sulphones and aryl bromides or iodides as reactants and proceeds under photoredox Ni-catalysed conditions. A combination of allyl glycosyl sulphones and tolyl sulfinate are used as synthetic equivalents of glycosyl anions. This approach obviates protecting groups on both reactants and accommodates various functional groups and heterocycles. Furthermore, the reaction displays high stereoselectivity across a broad range of glycosyl units. The protocol was applied in the synthesis of several sugar–drug conjugates and gliflozin drugs. Experimental studies provide an insight into the reaction mechanism and density functional theory calculations elucidate the origin of the stereoselectivity and highlight the benefit of using unprotected donors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Significance of aryl C-glycosides and synthetic approaches.
Fig. 2: Mechanistic studies.
Fig. 3: Computational studies.
Fig. 4: Synthetic applications.

Similar content being viewed by others

Data availability

Additional data supporting the findings described in this paper are available in the Supplementary Information.

References

  1. Mannem, R. R., Thoti, N. & Aidhen, I. S. in Carbohydrates in Drug Discovery and Development (ed. Tiwari, V. K.), 97–153 (Elsevier, 2020).

  2. Štambaský, J., Hocek, M. & Kočovský, P. C-nucleosides: synthetic strategies and biological applications. Chem. Rev. 109, 6729–6764 (2009).

    Article  PubMed  Google Scholar 

  3. Edward, C. C. & Robert, R. H. SGLT2 inhibition–a novel strategy for diabetes treatment. Nat. Rev. Drug Discov. 9, 551–559 (2010).

    Article  Google Scholar 

  4. Lavergne, T. et al. Expanding the scope of replicable unnatural DNA: stepwise optimization of a predominantly hydrophobic base pair. J. Am. Chem. Soc. 135, 5408–5419 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo, J., Wang, S., Dai, N., Teo, Y. N. & Kool, E. T. Multispectral labeling of antibodies with polyfluorophores on a DNA backbone and application in cellular imaging. Proc. Natl Acad. Sci. USA 108, 3493–3498 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Minakata, S. et al. Protein C-mannosylation and C-mannosyl tryptophan in chemical biology and medicine. Molecules 26, 5258 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, Y. & Yu, B. Recent advances in the chemical synthesis of c-glycosides. Chem. Rev. 117, 12281–12356 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Bokor, É. et al. C-glycopyranosyl arenes and hetarenes: synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev. 117, 1687–1764 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Kitamura, K., Ando, Y., Matsumoto, T. & Suzuki, K. Total synthesis of aryl C–glycoside natural products: strategies and tactics. Chem. Rev. 118, 1495–1598 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Liao, H., Ma, J., Yao, H. & Liu, X.-W. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org. Biomol. Chem. 16, 1791–1806 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Ghouilem, J., de Robichon, M., Le Bideau, F., Ferry, A. & Messaoudi, S. Emerging organometallic methods for the synthesis of C-branched (hetero)aryl, alkenyl, and alkyl glycosides: C–H functionalization and dual photoredox approaches. Chem. Eur. J. 27, 491–511 (2021).

    Article  CAS  PubMed  Google Scholar 

  12. Gong, H. & Gagné, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 130, 12177–12183 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, J. & Gong, H. Stereoselective preparation of α-C-vinyl/aryl glycosides via nickel-catalyzed reductive coupling of glycosyl halides with vinyl and aryl halides. Org. Lett. 20, 7991–7995 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, J., Lei, C. & Gong, H. Nickel-catalyzed reductive coupling of glucosyl halides with aryl/vinyl halides enabling β-selective preparation of C-aryl/vinyl glucosides. Sci. China Chem. 62, 1492–1496 (2019).

    Article  Google Scholar 

  15. Nicolas, L. et al. Diastereoselective metal-catalyzed synthesis of C-aryl and C-vinyl glycosides. Angew. Chem. Int. Ed. 51, 11101–11104 (2012).

    Article  CAS  Google Scholar 

  16. Zhu, F. et al. Glycosyl cross-coupling of anomeric nucleophiles: scope, mechanism, and applications in the synthesis of aryl C-glycosides. J. Am. Chem. Soc. 139, 17908–17922 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller, E. M. & Walczak, M. A. Light-mediated cross-coupling of anomeric trifluoroborates. Org. Lett. 23, 4289–4293 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adak, L. et al. Synthesis of aryl C-glycosides via iron-catalyzed cross coupling of halosugars: Stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc. 139, 10693–10701 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Dumoulin, A., Matsui, J. K., Gutierrez-Bonet, A. & Molander, G. A. Synthesis of non-classical arylated C-saccharides through nickel/photoredox dual catalysis. Angew. Chem. Int. Ed. 57, 6614–6618 (2018).

    Article  CAS  Google Scholar 

  20. Wang, Q. et al. Palladium-catalysed C–H glycosylation for synthesis of C-aryl glycosides. Nat. Catal. 2, 793–800 (2019).

    Article  CAS  Google Scholar 

  21. Lv, W., Chen, Y., Wen, S., Ba, D. & Cheng, G. Modular and stereoselective synthesis of C-aryl glycosides via catellani reaction. J. Am. Chem. Soc. 142, 14864–14870 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Ghouilem, J. et al. Diastereoselective Pd-catalyzed anomeric C(sp3)−H activation: synthesis of α‑(hetero)aryl C‑glycosides. ACS Catal. 11, 1818–1826 (2021).

    Article  CAS  Google Scholar 

  23. Mao, R. et al. Synthesis of C-mannosylated glycopeptides enabled by Ni-catalyzed photoreductive cross-coupling reactions. J. Am. Chem. Soc. 143, 12699–12707 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Takeda, D. et al. β-glycosyl trifluoroborates as precursors for direct α-C-glycosylation: synthesis of 2-deoxy-α-C-glycosides. Org. Lett. 23, 1940–1944 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Li, Y. et al. Chemoselective and diastereoselective synthesis of C-aryl nucleoside analogues by nickel-catalyzed cross-coupling of furanosyl acetates with aryl iodides. Angew. Chem. Int. Ed. 61, e202110391 (2022).

    CAS  Google Scholar 

  26. Wei, Y., Ben-Zvi, B. & Diao, T. Diastereoselective synthesis of aryl C-glycosides from glycosyl esters via C-O bond homolysis. Angew. Chem. Int. Ed. 60, 9433–9438 (2021).

    Article  CAS  Google Scholar 

  27. Wang, Q. et al. Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides. Nat. Synth. 1, 235–244 (2022).

    Article  Google Scholar 

  28. Li, Q., Levi, S. M., Wagen, C., Wendlandt, A. E. & Jacobsen, E. N. Site-selective, stereocontrolled glycosylation of minimally protected sugars. Nature https://doi.org/10.1038/s41586-022-04958-w (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Badir, S. O. & Molander, G. A. Developments in photoredox/nickel dual-catalyzed 1,2-difunctionalizations. Chem 6, 1327–1339 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marzo, L., Pagire, S. K., Reiser, O. & König, B. Visible-light photocatalysis: does it make a difference in organic synthesis. Angew. Chem. Int. Ed. 57, 10034–10072 (2018).

    Article  CAS  Google Scholar 

  31. Zhu, C., Yue, H., Chu, L. & Rueping, M. Recent advances in photoredox and nickel dual-catalyzed cascade reactions: pushing the boundaries of complexity. Chem. Sci. 11, 4051–4064 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhu, S., Zhao, X., Li, H. & Chu, L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    Article  CAS  Google Scholar 

  34. Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp3-carbons with aryl halides. Science 345, 437–440 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, Y., Wang, X., He, X., An, Q. & Zuo, Z. Photocatalytic dehydroxymethylative arylation by synergistic cerium and nickel catalysis. J. Am. Chem. Soc. 143, 4896–4902 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Lau, S. H. et al. Ni/photoredox-catalyzed enantioselective cross-electrophile coupling of styrene oxides with aryl iodides. J. Am. Chem. Soc. 143, 15873–15881 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sun, S. Z., Duan, Y., Mega, R. S., Somerville, R. J. & Martin, R. Site-selective 1,2-dicarbofunctionalization of vinyl boronates through dual catalysis. Angew. Chem. Int. Ed. 59, 4370–4374 (2020).

    Article  CAS  Google Scholar 

  39. Guan, H., Zhang, Q., Walsh, P. J. & Mao, J. Nickel/photoredox-catalyzed asymmetric reductive cross-coupling of racemic α-chloro esters with aryl iodides. Angew. Chem. Int. Ed. 59, 5172–5177 (2020).

    Article  CAS  Google Scholar 

  40. Liu, K., Leifert, D. & Studer, A. Cooperative triple catalysis enables regioirregular formal Mizoroki–Heck reactions. Nat. Synth. 1, 565–575 (2022).

    Article  Google Scholar 

  41. Qi, X. & Diao, T. Nickel-catalyzed dicarbofunctionalization of alkenes. ACS Catal. 10, 8542–8556 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, C. et al. A multicomponent synthesis of stereodefined olefins via nickel catalysis and single electron/triplet energy transfer. Nat. Catal. 2, 678–687 (2019).

    Article  CAS  Google Scholar 

  43. Garcia-Dominguez, A., Mondal, R. & Nevado, C. Dual photoredox/nickel-catalyzed three-component carbofunctionalization of alkenes. Angew. Chem. Int. Ed. 58, 12286–12290 (2019).

    Article  CAS  Google Scholar 

  44. Campbell, M. W., Compton, J. S., Kelly, C. B. & Molander, G. A. Three-component olefin dicarbofunctionalization enabled by nickel/photoredox dual catalysis. J. Am. Chem. Soc. 141, 20069–20078 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cabrera-Afonso, M. et al. Engaging sulfinate salts via Ni/photoredox dual catalysis enables facile Csp2SO2R coupling. Chem. Sci. 9, 3186–3191 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cacchi, S., Fabrizi, G., Goggiamani, A., Parisi, L. & Bernini, R. Unsymmetrical diaryl sulfones and aryl vinyl sulfones through palladium-catalyzed coupling of aryl and vinyl halides or triflates with sulfinic acid salts. J. Org. Chem. 69, 5608–5614 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Wan, L. Q. et al. Nonenzymatic S=stereoselective S-glycosylation of polypeptides and proteins. J. Am. Chem. Soc. 143, 11919–11926 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Zhang, C. et al. Halogen bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat. Chem. 14, 686–694 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Terrett, J. A., Cuthbertson, J. D., Shurtleff, V. W. & MacMillan, D. W. C. Switching on elusive organometallic mechanisms with photoredox catalysis. Nature 524, 330–334 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. MacQueen, P. M., Tassone, J. P., Diaz, C. & Stradiotto, M. Exploiting ancillary ligation to enable nickel-catalyzed C-O cross-couplings of aryl electrophiles with aliphatic alcohols. J. Am. Chem. Soc. 140, 5023–5027 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Magnet, S. & Blanchard, J. Molecular insights into aminoglycoside action and resistance. Chem. Rev. 105, 477–497 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Calvaresi, E. C. & Hergenrother, P. J. Glucose conjugation for the specific targeting and treatment of cancer. Chem. Sci. 4, 2319–2333 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Melisi, D., Curcio, A., Luongo, E., Morelli, E. & Grazia Rimoli, M. D-galactose as a vector for prodrug design. Curr. Top. Med. Chem. 11, 2288–2298 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Markovic, T. et al. Heterocyclic allylsulfones as latent heteroaryl nucleophiles in palladium-catalyzed cross-coupling reactions. J. Am. Chem. Soc. 140, 15916–15923 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Lu, Q. et al. Aerobic oxysulfonylation of alkenes leading to secondary and tertiary β-hydroxysulfones. Angew. Chem. Int. Ed. 52, 7156–7159 (2013).

    Article  CAS  Google Scholar 

  57. Zhu, S., Qin, J., Wang, F., Li, H. & Chu, L. Photoredox-catalyzed branch-selective pyridylation of alkenes for the expedient synthesis of triprolidine. Nat. Commun. 10, 749 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Meyer, A. U., Straková, K., Slanina, T. & König, B. Eosin Y (EY) photoredox-catalyzed sulfonylation of alkenes: scope and mechanism. Chem. Eur. J. 22, 8694–8699 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Quiclet-Sire, B. & Zard, S. Z. New radical allylation reaction. J. Am. Chem. Soc. 118, 1209–1210 (1996).

    Article  CAS  Google Scholar 

  60. Xia, Y. & Studer, A. Diversity-oriented desulfonylative functionalization of alkyl allyl sulfones. Angew. Chem. Int. Ed. 58, 9836–9840 (2019).

    Article  CAS  Google Scholar 

  61. Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nambo, M. & Crudden, C. M. Recent advances in the synthesis of triarylmethanes by transition metal catalysis. ACS Catal. 5, 4734–4742 (2015).

    Article  CAS  Google Scholar 

  63. Gong, L. et al. Ni-catalyzed suzuki-miyaura cross-coupling of alpha-oxo-vinylsulfones to prepare C-aryl glycals and acyclic vinyl ethers. J. Am. Chem. Soc. 141, 7680–7686 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Ariki, Z. T., Maekawa, Y., Nambo, M. & Crudden, C. M. Preparation of quaternary centers via nickel-catalyzed suzuki-miyaura cross-coupling of tertiary sulfones. J. Am. Chem. Soc. 140, 78–81 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. de Gombert, A. & Willis, M. C. Palladium-catalyzed desulfinative cross-couplings. Trends Chem. 2, 865–866 (2020).

    Article  Google Scholar 

  66. Miao, W. et al. Iron-Catalyzed difluoromethylation of arylzincs with difluoromethyl 2-pyridyl sulfone. J. Am. Chem. Soc. 140, 880–883 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Merchant, R. R. et al. Modular radical cross-coupling with sulfones enables access to sp3-rich (fluoro)alkylated scaffolds. Science 360, 75–80 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mazéas, D., Skrydstrup, T. & Beau, J.-M. A highly stereoselective synthesis of 1,2-trans-C-glycosides via glycosyl samarium(III) compounds. Angew. Chem. Int. Ed. 34, 909–912 (1995).

    Article  Google Scholar 

  69. Giese, B. The stereoselectivity of intermolecular free radical reactions. Angew. Chem. Int. Ed. 28, 969–980 (1989).

    Article  Google Scholar 

  70. Xu, L.-Y., Fan, N.-L. & Hu, X.-G. Recent development in the synthesis of C-glycosides involving glycosyl radicals. Org. Biomol. Chem. 18, 5095–5109 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Zhu, F. & Walczak, M. A. Stereochemistry of transition metal complexes controlled by the metallo-anomeric effect. J. Am. Chem. Soc. 142, 15127–15136 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dupuis, J. et al. Conformation of glycosyl radicals: radical stabilization by β-CO bonds. Angew. Chem. Int. Ed. 23, 896–898 (1984).

    Article  Google Scholar 

  73. Mamidyala, S. K. et al. Glycomimetic ligands for the human asialoglycoprotein receptor. J. Am. Chem. Soc. 134, 1978–1981 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Spiegel, D., Caianiello, D. & Zhang, M. Bifunctional small molecules to target the selective degradation of circulating proteins. Patent WO/2019/199634. Filed April 08, 2019; issued October 17, 2019.

  75. Ahn, G. et al. LYTACs that engage the asialoglycoprotein receptor for targeted protein degradation. Nat. Chem. Biol. 17, 937–946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aguillón, A. R. et al. Synthetic strategies toward SGLT2 inhibitors. Org. Proc. Res. Dev. 22, 467–488 (2018).

    Article  Google Scholar 

  77. Buglioni, L., Raymenants, F., Slattery, A., Zondag, S. D. A. & Noël, T. Technological innovations in photochemistry for organic synthesis: flow chemistry, high-throughput experimentation, scale-up, and photoelectrochemistry. Chem. Rev. 122, 2752–2906 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.N. acknowledges funding from the National Natural Science Foundation (grant nos. 21922106 and 21772125) and 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University.

Author information

Authors and Affiliations

Authors

Contributions

D.N. conceptualized and guided the project, and wrote the manuscript with feedback from other authors. C.Z. made the initial discovery. S.-Y.X. performed DFT calculations. All authors performed the experiments and analysed data.

Corresponding author

Correspondence to Dawen Niu.

Ethics declarations

Competing interests

C.Z., X.Z. and D.N. are authors on a patent (PCT/CN2020/103340) filed by Sichuan University for the sulphone reagents used in this paper. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Xiang-Guo Hu, Christian Pedersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, Supplementary Sections 1–10, Figs. 1–9 and Tables 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Xu, SY., Zuo, H. et al. Direct synthesis of unprotected aryl C-glycosides by photoredox Ni-catalysed cross-coupling. Nat. Synth 2, 251–260 (2023). https://doi.org/10.1038/s44160-022-00214-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00214-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing