Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Catalytic acceptorless dehydrogenative coupling mediated by photoinduced hydrogen-atom transfer

Abstract

Acceptorless dehydrogenative cross-coupling between two carbon–hydrogen (C–H) bonds has garnered increasing attention in synthetic chemistry. Cross-coupling of this type does not require the use of functionalized reactive reagents such as organic halides and organometallics. In addition, acceptorless dehydrogenation can proceed without external oxidants, releasing molecular hydrogen as the sole by-product. These features enable target molecules to be accessed with fewer synthetic steps and reduced waste. For the development of dehydrogenative cross-coupling reactions, viable methodologies for the cleavage of C–H bonds are crucial. Hydrogen-atom transfer (HAT) catalysis has significant potential because a diverse range of hydrocarbons can be subjected to HAT. This Perspective describes the use of photoinduced HAT catalysis in acceptorless dehydrogenative reactions, with the aim of providing an opportunity to consider the future prospects of this methodology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hybrid catalysis using a cobaloxime and TBADT.
Fig. 2: ADC reactions based on the use of heteroatom-centred radicals.
Fig. 3: ADC reactions based on the use of an iridium-based photosensitizer and organic molecular HAT catalyst46.
Fig. 4: ADC reactions using an iridium-based photosensitizer and a nickel catalyst47.

Similar content being viewed by others

References

  1. Li, C. J. Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc. Chem. Res. 42, 335–344 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Le Bras, J. & Muzart, J. Intermolecular dehydrogenative Heck reactions. Chem. Rev. 111, 1170–1214 (2011).

    Article  PubMed  Google Scholar 

  3. Girard, S. A., Knauber, T. & Li, C. J. The cross-dehydrogenative coupling of C(sp3)–H bonds: a versatile strategy for C–C bond formations. Angew. Chem. Int. Ed. 53, 74–100 (2014).

    Article  CAS  Google Scholar 

  4. Liu, C. et al. Oxidative coupling between two hydrocarbons: an update of recent C–H functionalizations. Chem. Rev. 115, 12138–12204 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Trost, B. M. The atom economy: a search for synthetic efficiency. Science 254, 1471–1477 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Chen, B., Wu, L.-Z. & Tung, C.-H. Photocatalytic activation of less reactive bonds and their functionalization via hydrogen-evolution cross-couplings. Acc. Chem. Res. 51, 2512–2523 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Siddiki, S. M. A. H., Toyao, T. & Shimizu, K. Acceptorless dehydrogenative coupling reactions with alcohols over heterogeneous catalysts. Green Chem. 20, 2933–2952 (2018).

    Article  Google Scholar 

  8. Tang, S., Zeng, L. & Lei, A. Oxidative R1–H/R2–H cross-coupling with hydrogen evolution. J. Am. Chem. Soc. 140, 13128–13135 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, H., Gao, X., Lv, Z., Abdelilah, T. & Lei, A. Recent advances in oxidative R1–H/R2–H cross-coupling with hydrogen evolution via photo-/electrochemistry. Chem. Rev. 119, 6769–6787 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Maji, M., Panja, D., Borthakur, I. & Kundu, S. Recent advances in sustainable synthesis of N-heterocycles following acceptorless dehydrogenative coupling protocol using alcohols. Org. Chem. Front. 8, 2673–2709 (2021).

    Article  CAS  Google Scholar 

  11. Gandeepan, P. et al. 3d transition metals for C–H activation. Chem. Rev. 119, 2192–2452 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Li, X. et al. Recent development on Cp*Ir(III)-catalyzed C–H bond functionalization. ChemCatChem 12, 2358–2384 (2020).

    Article  CAS  Google Scholar 

  13. Tzirakis, M. D., Lykakis, I. N. & Orfanopoulos, M. Decatungstate as an efficient photocatalyst in organic chemistry. Chem. Soc. Rev. 38, 2609–2621 (2009).

    Article  CAS  PubMed  Google Scholar 

  14. Ravelli, D., Fagnoni, M., Fukuyama, T., Nishikawa, T. & Ryu, I. Site-selective C–H functionalization by decatungstate anion photocatalysis: synergistic control by polar and steric effects expands the reaction scope. ACS Catal. 8, 701–713 (2018).

    Article  CAS  Google Scholar 

  15. Capaldo, L., Quadri, L. L. & Ravelli, D. Photocatalytic hydrogen atom transfer: the philosopher’s stone for late-stage functionalization? Green Chem. 22, 3376–3396 (2020).

    Article  CAS  Google Scholar 

  16. Zhang, D., Hui, X., Wu, C. & Zhu, Y. Metal-catalyzed hydrogen evolution reactions involving strong C–H bonds activation via hydrogen atom transfer. ChemCatChem 13, 3370–3380 (2021).

    Article  CAS  Google Scholar 

  17. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem. Rev. 110, 681–703 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Crabtree, R. H. Homogeneous transition metal catalysis of acceptorless dehydrogenative alcohol oxidation: applications in hydrogen storage and to heterocycle synthesis. Chem. Rev. 117, 9228–9246 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Mukherjee, A. & Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal. 8, 11435–11469 (2018).

    Article  CAS  Google Scholar 

  20. West, J. G., Huang, D. & Sorensen, E. J. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis. Nat. Commun. 6, 10093 (2015).

    Article  PubMed  Google Scholar 

  21. Zhao, L.-M. et al. Photocatalysis with quantum dots and visible light: selective and efficient oxidation of alcohols to carbonyl compounds through a radical relay process in water. Angew. Chem. Int. Ed. 56, 3020–3024 (2017).

    Article  CAS  Google Scholar 

  22. Kato, S. et al. Hybrid catalysis enabling room-temperature hydrogen gas release from N-heterocycles and tetrahydronaphthalenes. J. Am. Chem. Soc. 139, 2204–2207 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Fuse, H., Kojima, M., Mitsunuma, H. & Kanai, M. Acceptorless dehydrogenation of hydrocarbons by noble-metal free hybrid catalyst system. Org. Lett. 20, 2042–2045 (2018).

    Article  CAS  PubMed  Google Scholar 

  24. Fuse, H., Mitsunuma, H. & Kanai, M. Catalytic acceptorless dehydrogenation of aliphatic alcohols. J. Am. Chem. Soc. 142, 4493–4499 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Nikolaienko, P., Jentsch, M., Kale, A. P., Cai, Y. & Rueping, M. Electrochemical and scalable dehydrogenative C(sp3)–H amination via remote hydrogen atom transfer in batch and continuous flow. Chem. Eur. J. 25, 7177–7184 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. McManus, J. B., Griffin, J. D., White, A. R. & Nicewicz, D. A. Homobenzylic oxygenation enabled by dual organic photoredox and cobalt catalysis. J. Am. Chem. Soc. 142, 10325–10330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou, M.-J., Zhang, L., Liu, G., Xu, C. & Huang, Z. Site-selective acceptorless dehydrogenation of aliphatics enabled by organophotoredox/cobalt dual catalysis. J. Am. Chem. Soc. 143, 16470–16485 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. Dempsey, J. L., Brunschwig, B. S., Winkler, J. R. & Gray, H. B. Hydrogen evolution catalyzed by cobaloximes. Acc. Chem. Res. 42, 1995–2004 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Ravelli, D., Protti, S. & Fagnoni, M. Decatungstate anion for photocatalyzed ‘window ledge’ reactions. Acc. Chem. Res. 49, 2232–2242 (2016).

    Article  CAS  PubMed  Google Scholar 

  30. Cao, H. et al. Photoinduced site-selective alkenylation of alkanes and aldehydes with aryl alkenes. Nat. Commun. 11, 1956 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lacy, D. C., Roberts, G. M. & Peters, J. C. The cobalt hydride that never was: revisiting Schrauzer’s ‘hydridocobaloxime’. J. Am. Chem. Soc. 137, 4860–4864 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. Estes, D. P., Grills, D. C. & Norton, J. R. The reaction of cobaloximes with hydrogen: products and thermodynamics. J. Am. Chem. Soc. 136, 17362–17365 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu, W.-L. et al. Dehydrogenative silylation of alkenes for the synthesis of substituted allylsilanes by photoredox, hydrogen-atom transfer, and cobalt catalysis. Angew. Chem. Int. Ed. 58, 10941–10945 (2019).

    Article  CAS  Google Scholar 

  35. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Luo, J. & Zhang, J. Donor–acceptor fluorophores for visible-light-promoted organic synthesis: photoredox/Ni dual catalytic C(sp3)–C(sp2) cross-coupling. ACS Catal. 6, 873–877 (2016).

    Article  CAS  Google Scholar 

  37. Jeffrey, J. L., Terrett, J. A. & MacMillan, D. W. C. O–H hydrogen bonding promotes H-atom transfer from α C–H bonds for C-alkylation of alcohols. Science 349, 1532–1536 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang, C.-Y., Li, J. & Li, C.-J. A cross-dehydrogenative C(sp3)–H heteroarylation via photo-induced catalytic chlorine radical generation. Nat. Commun. 12, 4010 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. McCallum, T., Pitre, S. P., Morin, M., Scaiano, J. C. & Barriault, L. The photochemical alkylation and reduction of heteroarenes. Chem. Sci. 8, 7412–7118 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li, D.-S. et al. Stop-flow microtubing reactor-assisted visible light-induced hydrogen-evolution cross coupling of heteroarenes with C(sp3)–H bonds. ACS Catal. 12, 4473–4480 (2022).

    Article  CAS  Google Scholar 

  41. Xue, F. et al. Reaction discovery using acetylene gas as the chemical feedstock accelerated by the ‘stop-flow’ micro-tubing reactor system. Chem. Sci. 8, 3623–3627 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Darcy, J. W., Koronkiewicz, B., Parada, G. A. & Mayer, J. M. A continuum of proton-coupled electron transfer reactivity. Acc. Chem. Res. 51, 2391–2399 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Murray, P. R. D. et al. Photochemical and electrochemical applications of proton-coupled electron transfer in organic synthesis. Chem. Rev. 122, 2017–2291 (2022).

    Article  CAS  PubMed  Google Scholar 

  44. Bodedla, G. B. et al. Cocatalyst-free photocatalytic hydrogen evolution with simple heteroleptic iridium(III) complexes. ACS Appl. Energy Mater. 4, 3945–3951 (2021).

    Article  CAS  Google Scholar 

  45. Ohmatsu, K., Suzuki, R., Furukawa, Y., Sato, M. & Ooi, T. Zwitterionic 1,2,3-triazolium amidate as a catalyst for photoinduced hydrogen-atom transfer radical alkylation. ACS Catal. 10, 2627–2632 (2020).

    Article  CAS  Google Scholar 

  46. Minami, K., Ohmatsu, K. & Ooi, T. Hydrogen-atom-transfer-mediated acceptorless dehydrogenative cross-coupling enabled by multiple catalytic functions of zwitterionic triazolium amidate. ACS Catal. 12, 1971–1976 (2022).

    Article  CAS  Google Scholar 

  47. Kawasaki, T., Ishida, N. & Murakami, M. Dehydrogenative coupling of benzylic and aldehydic C–H bonds. J. Am. Chem. Soc. 142, 3366–3370 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Kawasaki, T., Ishida, N. & Murakami, M. Photoinduced specific acylation of phenolic hydroxy groups with aldehydes. Angew. Chem. Int. Ed. 59, 18267–18271 (2020).

    Article  CAS  Google Scholar 

  49. Kawasaki, T., Tosaki, T., Ishida, N. & Murakami, M. Visible-light-driven dehydrogenative coupling of primary alcohols with phenols forming aryl carboxylates. Org. Lett. 23, 7683–7687 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This report was prepared as an account of work supported by JSPS KAKENHI Grant Number JP17H06446 in Hybrid Catalysis for Enabling Molecular Synthesis on Demand and JP21H01930.

Author information

Authors and Affiliations

Authors

Contributions

K.O. and T.O. contributed to discussions and wrote the manuscript.

Corresponding author

Correspondence to Takashi Ooi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Chao-Jun Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohmatsu, K., Ooi, T. Catalytic acceptorless dehydrogenative coupling mediated by photoinduced hydrogen-atom transfer. Nat. Synth 2, 209–216 (2023). https://doi.org/10.1038/s44160-022-00195-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00195-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing