Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Synthetic approaches to 1,4-dicarbonyl compounds

Abstract

The synthesis of 1,4-dicarbonyls is a considerable challenge to organic chemists. While classical strategies to form 1,n-dioxygenated fragments, in which n is an odd number, are based on natural polarity, such that synthetic approaches are intuitive, the synthesis of 1,4-dicarbonyl moieties is more challenging and therefore less easily conceptualized. Owing to the intrinsic mismatch of the carbonyl polarity, 1,4-dicarbonyl compounds are a welcome retrosynthetic challenge to the creativity of synthetic chemists. Over the past decades, this problem has been addressed by multiple methods, which include organocatalytic Stetter reactions, oxidative enolate coupling and Claisen rearrangement–cleavage cascades, which all show remarkable levels of stereocontrol. Recent advances in forming 1,4-dicarbonyls largely focused on radical Stetter-type approaches or enolate umpolung reactions employing enolonium intermediates, as well as other methodologies that use non-carbonyl precursors. These routes give rise to the array of procedures presented in this Review. The Review also provides examples from natural product synthesis, which show that—despite the considerable advances in the field—there is still no singular, broadly applicable solution to the challenge of 1,4-dicarbonyl synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of valuable 1,4-dicarbonyl compounds and the associated retrosynthetic challenges.
Fig. 2: Synthesis of 1,4-dicarbonyls using two-electron processes via the C1,C2 disconnection (0 + 2 electron coupling).
Fig. 3: Different approaches to 1,4-dicarbonyl synthesis using a radical 1,2-retrosynthetic disconnection (1 + 1 electron coupling).
Fig. 4: Different approaches to 1,4-dicarbonyl synthesis through σ-bond formation between carbon atoms 2 and 3.
Fig. 5: Different approaches to 1,4-dicarbonyl synthesis through two-electron coupling between carbon atoms 2 and 3 (2 + 2 electron coupling).
Fig. 6: Different approaches to 1,4-dicarbonyls from non-carbonyl precursors through sigmatropic rearrangements and enyne hydration as well as a photoredox-catalysed approach.
Fig. 7: Application of 1,4-dicarbonyl syntheses in the context of total synthesis (I).
Fig. 8: Application of 1,4-dicarbonyl syntheses in the context of total synthesis (II).

Similar content being viewed by others

References

  1. Fujisawa, T. et al. Highly water-soluble matrix metalloproteinases inhibitors and their effects in a rat adjuvant-induced arthritis model. Bioorg. Med. Chem. 10, 2569–2581 (2002).

    Article  CAS  Google Scholar 

  2. Polonsky, J. in Progress in the Chemistry of Organic Natural Products (eds Cormier, M. J. et al.) 101–150 (Springer, 1973).

  3. Tokiwa, Y., Calabia, B. P., Ugwu, C. U. & Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 10, 3722–3742 (2009).

    Article  CAS  Google Scholar 

  4. Corey, E. J. & Seebach, D. Synthesis of 1,n-dicarbonyl derivates using carbanions from 1,3-dithianes. Angew. Chem. Int. Ed. 4, 1077–1078 (1965).

    Article  CAS  Google Scholar 

  5. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

    Article  Google Scholar 

  6. Stetter, H. & Schreckenberg, M. A new method for addition of aldehydes to activated double bonds. Angew. Chem. Int. Ed. 12, 81–81 (1973).

    Article  Google Scholar 

  7. Yetra, S. R., Patra, A. & Biju, A. T. Recent advances in the N-heterocyclic carbene (NHC)-organocatalyzed Stetter reaction and related chemistry. Synthesis 47, 1357–1378 (2015).

    Article  CAS  Google Scholar 

  8. Heravi, M. M., Zadsirjan, V., Kafshdarzadeh, K. & Amiri, Z. Recent advances in Stetter reaction and related chemistry: an update. Asian J. Org. Chem. 9, 1999–2034 (2020).

    Article  CAS  Google Scholar 

  9. Stetter, H. Catalyzed addition of aldehydes to activated double bonds-a new synthetic approach. Angew. Chem. Int. Ed. 15, 639–647 (1976).

    Article  Google Scholar 

  10. Enders, D., Breuer, K., Runsink, J. & Teles, J. H. The Frist asymmetric intramolecular Stetter reaction. Preliminary communication. Helv. Chim. Acta 79, 1899–1902 (1996).

    Article  CAS  Google Scholar 

  11. Sohn, S. S., Rosen, E. L. & Bode, J. W. N-heterocyclic carbene-catalyzed generation of homoenolates: γ-butyrolactones by direct annulations of enals and aldehydes. J. Am. Chem. Soc. 126, 14370–14371 (2004).

    Article  CAS  Google Scholar 

  12. Glorius, F. & Burstein, C. Conjugate umpolung of a,β-unsaturated aldehydes for the synthesis of γ-butyrolactones. Angew. Chem. Int. Ed. 43, 6205–6208 (2004).

    Article  Google Scholar 

  13. de Alaniz, J. R., Kerr, M. S., Moore, J. L. & Rovis, T. Scope of the asymmetric intramolecular Stetter reaction catalyzed by chiral nucleophilic triazolinylidene carbenes. J. Org. Chem. 6, 2033–2040 (2008).

    Article  Google Scholar 

  14. Barik, S. et al. NHC-catalyzed desymmetrization of N-aryl maleimides leading to the atroposelective synthesis of N-aryl succinimides. Angew. Chem. Int. Ed. 60, 12264–12268 (2021).

    Article  CAS  Google Scholar 

  15. Garapati, V. K. R. & Gravel, M. Oxazolium salts as organocatalysts for the umpolung of aldehydes. Org. Lett. 20, 6372–6375 (2018).

    Article  CAS  Google Scholar 

  16. Yadav, S. & Suresh, S. N‐heterocyclic carbene (NHC)‐catalyzed intramolecular Stetter reaction to access dibenzo‐fused seven‐membered heterocycles. Asian J. Org. Chem. 10, 1406–1409 (2021).

    Article  CAS  Google Scholar 

  17. Rezazadeh Khalkhali, M., Wilde, M. M. D. & Gravel, M. Enantioselective Stetter reactions catalyzed by bis(amino)cyclopropenylidenes: important role for water as an additive. Org. Lett. 23, 155–159 (2021).

    Article  CAS  Google Scholar 

  18. Dzieszkowski, K. & Rafiński, Z. N‐heterocyclic carbene‐catalyzed enantioselective intramolecular annulations to construct benzo‐fused pyranones with quaternary stereocenter. Adv. Synth. Catal. 362, 3830–3835 (2020).

    Article  CAS  Google Scholar 

  19. Chen, X. et al. Intramolecular stereoselective Stetter reaction catalyzed by benzaldehyde lyase. Angew. Chem. Int. Ed. 60, 9326–9329 (2021).

    Article  CAS  Google Scholar 

  20. Yoo, E. J., Wasa, M. & Yu, J.-Q. Pd(II)-catalyzed carbonylation of C(sp3)-H bonds: a new entry to 1,4-dicarbonyl compounds. J. Am. Chem. Soc. 132, 17378–17380 (2010).

    Article  CAS  Google Scholar 

  21. Ji, X., Shen, C., Tian, X. & Dong, K. Palladium-catalyzed asymmetric hydroesterification of α-aryl acrylic acids to chiral substituted succinates. Org. Lett. 23, 8645–8649 (2021).

    Article  CAS  Google Scholar 

  22. Giese, B. & Lachhein, S. Steric effects in the addition of alkyl radicals to alkenes. Angew. Chem. Int. Ed. 20, 967–967 (1981).

    Article  Google Scholar 

  23. Morack, T., Mück-Lichtenfeld, C. & Gilmour, R. Bioinspired radical Stetter reaction: radical umpolung enabled by ion-pair photocatalysis. Angew. Chem. Int. Ed. 58, 1208–1212 (2019).

    Article  CAS  Google Scholar 

  24. Zhao, J.-J., Zhang, H.-H., Shen, X. & Yu, S. Enantioselective radical hydroacylation of enals with α-ketoacids enabled by photoredox/amine cocatalysis. Org. Lett. 21, 913–916 (2019).

    Article  CAS  Google Scholar 

  25. Goti, G., Bieszczad, B., Vega-Peñaloza, A. & Melchiorre, P. Stereocontrolled synthesis of 1,4-dicarbonyl compounds by photochemical organocatalytic acyl radical addition to enals. Angew. Chem. Int. Ed. 58, 1213–1217 (2019).

    Article  CAS  Google Scholar 

  26. Cheng, Y.-Y. et al. Direct 1,2-dicarbonylation of alkenes towards 1,4-diketones via photocatalysis. Angew. Chem. Int. Ed. 60, 26822–26828 (2021).

    Article  CAS  Google Scholar 

  27. Hervieu, C. et al. Asymmetric, visible light-mediated radical sulfinyl-Smiles rearrangement to access all-carbon quaternary stereocentres. Nat. Chem. 13, 327–334 (2021).

    Article  CAS  Google Scholar 

  28. Che, C., Qian, Z., Wu, M., Zhao, Y. & Zhu, G. Intermolecular oxidative radical addition to aromatic aldehydes: direct access to 1,4- and 1,5-diketones via silver-catalyzed ring-opening acylation of cyclopropanols and cyclobutanols. J. Org. Chem. 83, 5665–5673 (2018).

    Article  CAS  Google Scholar 

  29. Starkey, L. S. Introduction to Strategies for Organic Synthesis (John Wiley & Sons, 2018).

  30. Arava, S. et al. Enolonium species—umpoled enolates. Angew. Chem. Int. Ed. 56, 2599–2603 (2017).

    Article  CAS  Google Scholar 

  31. Parida, K. N., Pathe, G. K., Maksymenko, S. & Szpilman, A. M. Cross-coupling of dissimilar ketone enolates via enolonium species to afford non-symmetrical 1,4-diketones. Beilstein J. Org. Chem. 14, 992–997 (2018).

    Article  CAS  Google Scholar 

  32. Kaiser, D., Bauer, A., Lemmerer, M. & Maulide, N. Amide activation: an emerging tool for chemoselective synthesis. Chem. Soc. Rev. 47, 7899–7925 (2018).

    Article  CAS  Google Scholar 

  33. Kaiser, D., Teskey, C. J., Adler, P. & Maulide, N. Chemoselective intermolecular cross-enolate-type coupling of amides. J. Am. Chem. Soc. 139, 16040–16043 (2017).

    Article  CAS  Google Scholar 

  34. DeMartino, M. P., Chen, K. & Baran, P. S. Intermolecular enolate heterocoupling: scope, mechanism, and application. J. Am. Chem. Soc. 130, 11546–11560 (2008).

    Article  CAS  Google Scholar 

  35. Amaya, T., Maegawa, Y., Masuda, T., Osafune, Y. & Hirao, T. Selective intermolecular oxidative cross-coupling of enolates. J. Am. Chem. Soc. 137, 10072–10075 (2015).

    Article  CAS  Google Scholar 

  36. Robinson, E. E. & Thomson, R. J. A strategy for the convergent and stereoselective assembly of polycyclic molecules. J. Am. Chem. Soc. 140, 1956–1965 (2018).

    Article  CAS  Google Scholar 

  37. Clift, M. D., Taylor, C. N. & Thomson, R. J. Oxidative carbon–carbon bond formation via silyl bis-enol ethers: controlled cross-coupling for the synthesis of quaternary centers. Org. Lett. 9, 4667–4669 (2007).

    Article  CAS  Google Scholar 

  38. Strehl, J. & Hilt, G. Electrochemical, manganese-assisted carbon–carbon bond formation between β-keto esters and silyl enol ethers. Org. Lett. 21, 5259–5263 (2019).

    Article  CAS  Google Scholar 

  39. Cuccu, F. et al. Tandem Wittig reaction—ring contraction of cyclobutanes: a route to functionalized cyclopropanecarbaldehydes. Org. Lett. 21, 7755–7758 (2019).

    Article  CAS  Google Scholar 

  40. Zhang, H. et al. Visible-light-mediated formal carbene insertion reaction: enantioselective synthesis of 1,4-dicarbonyl compounds containing all-carbon quaternary stereocenter. ACS Catal. 9, 5510–5516 (2022).

    Article  Google Scholar 

  41. Neuhaus, J. D., Bauer, A., Pinto, A. & Maulide, N. A catalytic cross-olefination of diazo compounds with sulfoxonium ylides. Angew. Chem. Int. Ed. 57, 16215–16218 (2018).

    Article  CAS  Google Scholar 

  42. Hansen, J. H. et al. Rhodium(II)-catalyzed cross-coupling of diazo compounds. Angew. Chem. Int. Ed. 50, 2544–2548 (2011).

    Article  CAS  Google Scholar 

  43. Carman, L., Kwart, L. D. & Hudlicky, T. Claisen/ozonolysis alternative to alkylation of enolate anions. Synthesis of 1,4-dicarbonyl compounds. Synth. Commun. 16, 169–182 (1986).

    Article  CAS  Google Scholar 

  44. Bao, R., Valverde, S. & Herradón, B. The Claisen–Johnson rearrangement route to 1,4-dicarbonyl compounds: synthesis of ethyl 4-ethoxy-4-alkenoates as masked 4-oxo esters. Synlett 1992, 217–219 (2002).

    Article  Google Scholar 

  45. Evans, D. A., Bartroli, J. & Shih, T. L. Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates. J. Am. Chem. Soc. 103, 2127–2129 (1981).

    Article  CAS  Google Scholar 

  46. Kaldre, D., Klose, I. & Maulide, N. Stereodivergent synthesis of 1,4-dicarbonyls by traceless charge-accelerated sulfonium rearrangement. Science 361, 664–667 (2018).

    Article  CAS  Google Scholar 

  47. Evano, G., Lecomte, M., Thilmany, P. & Theunissen, C. Keteniminium ions: unique and versatile reactive intermediates for chemical synthesis. Synthesis 49, 3183–3214 (2017).

    Article  CAS  Google Scholar 

  48. Huang, X., Klimczyk, S. & Maulide, N. Charge-accelerated sulfonium [3,3]-sigmatropic rearrangements. Synthesis 2012, 175–183 (2012).

    Article  Google Scholar 

  49. Luparia, M. et al. Catalytic asymmetric diastereodivergent deracemization. Angew. Chem. Int. Ed. 50, 12631–12635 (2011). A definition of diastereodivergence in catalysis.

  50. Krautwald, S., Sarlah, D., Schafroth, M. A. & Carreira, E. M. Enantio- and diastereodivergent dual catalysis: α-allylation of branched aldehydes. Science 340, 1065–1068 (2013).

  51. Audisio, D., Luparia, M., Oliveira, M. T., Klütt, D. & Maulide, N. Diastereodivergent de-epimerization in catalytic asymmetric allylic alkylation. Angew. Chem. Int. Ed. 51, 7314–7317 (2012).

    Article  CAS  Google Scholar 

  52. Oliveira, M. T., Luparia, M., Audisio, D. & Maulide, N. Dual catalysis becomes diastereodivergent. Angew. Chem. Int. Ed. 52, 13149–13152 (2013).

    Article  CAS  Google Scholar 

  53. Beletskaya, I. P., Nájera, C. & Yus, M. Stereodivergent catalysis. Chem. Rev. 118, 5080–5200 (2018).

    Article  CAS  Google Scholar 

  54. Zuo, Z. et al. Enantioselective decarboxylative arylation of α-amino acids via the merger of photoredox and nickel catalysis. J. Am. Chem. Soc. 138, 1832–1835 (2016).

    Article  CAS  Google Scholar 

  55. Tian, X. et al. Diastereodivergent asymmetric sulfa-Michael additions of α-branched enones using a single chiral organic catalyst. J. Am. Chem. Soc. 133, 17934–17941 (2011).

    Article  CAS  Google Scholar 

  56. Huang, Y., Walji, A. M., Larsen, C. H. & MacMillan, D. W. C. Enantioselective organo-cascade catalysis. J. Am. Chem. Soc. 127, 15051–15053 (2005).

    Article  CAS  Google Scholar 

  57. Shi, S.-L., Wong, Z. L. & Buchwald, S. L. Copper-catalysed enantioselective stereodivergent synthesis of amino alcohols. Nature 532, 353–356 (2016).

    Article  CAS  Google Scholar 

  58. Zhou, W. & Voituriez, A. Gold(I)-catalyzed synthesis of highly substituted 1,4-dicarbonyl derivatives via sulfonium [3,3]-sigmatropic rearrangement. Org. Lett. 23, 247–252 (2021).

    Article  CAS  Google Scholar 

  59. Zhou, W. & Voituriez, A. Synthesis of cyclopentenones with C4-quaternary stereocenters via stereospecific [3,3]-sigmatropic rearrangement and applications in total synthesis of sesquiterpenoids. J. Am. Chem. Soc. 143, 17348–17353 (2021).

    Article  CAS  Google Scholar 

  60. Kobatake, T., Yoshida, S., Yorimitsu, H. & Oshima, K. Reaction of 2-(2,2,2-trifluoroethylidene)-1,3-dithiane 1-oxide with ketones under Pummerer conditions and its application to the synthesis of 3-trifluoromethyl-substituted five-membered heteroarenes. Angew. Chem. Int. Ed. 49, 2340–2343 (2010).

    Article  CAS  Google Scholar 

  61. Huang, S., Kötzner, L., De, C. K. & List, B. Catalytic asymmetric dearomatizing redox cross coupling of ketones with aryl hydrazines giving 1,4-diketones. J. Am. Chem. Soc. 137, 3446–3449 (2015).

    Article  CAS  Google Scholar 

  62. Jadhav, A. M., Gawade, S. A., Vasu, D., Dateer, R. B. & Liu, R. S. ZnII- and AuI-catalyzed regioselective hydrative oxidations of 3-en-1-ynes with Selectfluor: realization of 1,4-dioxo and 1,4-oxohydroxy functionalizations. Chem. Eur. J. 20, 1813–1817 (2014).

    Article  CAS  Google Scholar 

  63. Dong, Y., Li, R., Zhou, J. & Sun, Z. Synthesis of unsymmetrical 1,4-dicarbonyl compounds by photocatalytic oxidative radical additions. Org. Lett. 23, 6387–6390 (2021).

    Article  CAS  Google Scholar 

  64. Shirley, H. J., Koyioni, M., Muncan, F. & Donohoe, T. J. Synthesis of lamellarin alkaloids using orthoester-masked α-keto acids. Chem. Sci. 10, 4334–4338 (2019).

    Article  CAS  Google Scholar 

  65. Valot, G. et al. Total synthesis of amphidinolide F. Angew. Chem. Int. Ed. 52, 9534–9538 (2013).

    Article  CAS  Google Scholar 

  66. Cernijenko, A., Risgaard, R. & Baran, P. S. 11-step total synthesis of (–)-maoecrystal V. J. Am. Chem. Soc. 138, 9425–9428 (2016).

    Article  CAS  Google Scholar 

  67. Cox, J. B., Kimishima, A. & Wood, J. L. Total synthesis of herquline B and C. J. Am. Chem. Soc. 141, 25–28 (2019).

    Article  CAS  Google Scholar 

  68. He, C., Stratton, T. P. & Baran, P. S. Concise total synthesis of herqulines B and C. J. Am. Chem. Soc. 141, 29–32 (2019).

    Article  CAS  Google Scholar 

  69. Zhu, X., McAtee, C. C. & Schindler, C. S. Total syntheses of herqulines B and C. J. Am. Chem. Soc. 141, 3409–3413 (2019).

    Article  CAS  Google Scholar 

  70. Cochrane, J. R., White, J. M., Wille, U. & Hutton, C. A. Total synthesis of mycocyclosin. Org. Lett. 14, 2402–2405 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Generous support by the ERC (CoG VINCAT 682002 to N.M.) is acknowledged. We are also grateful to the University of Vienna and the Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences for continued support of our research programmes.

Author information

Authors and Affiliations

Authors

Contributions

M.L., M.S., D.K. and N.M. contributed to the discussions and wrote the manuscript.

Corresponding author

Correspondence to Nuno Maulide.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemmerer, M., Schupp, M., Kaiser, D. et al. Synthetic approaches to 1,4-dicarbonyl compounds. Nat. Synth 1, 923–935 (2022). https://doi.org/10.1038/s44160-022-00179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00179-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing