Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Asymmetric 1,2-oxidative alkylation of conjugated dienes via aliphatic C–H bond activation

A Publisher Correction to this article was published on 06 January 2023

This article has been updated

Abstract

The merging of transition-metal catalysis with radical chemistry offers a versatile platform for three-component difunctionalization of alkenes, allowing the construction of molecular complexity from readily available feedstocks. However, the direct use of hydrocarbon feedstocks as sp3-hybridized carbon radical precursors to participate in catalytic enantioselective functionalization of alkenes remains elusive. Here we describe an asymmetric 1,2-oxidative alkylation of conjugated dienes based on direct functionalization of strong and neutral C(sp3)–H bonds enabled by the combination of hydrogen atom transfer and copper catalysis. This approach allows carbon-centred radicals to be generated by selective activation of aliphatic C–H bonds, which are ubiquitous in hydrocarbons and other radical precursors. These radicals then react with 1,3-dienes to give allylic radicals which participate in copper-mediated asymmetric C–O coupling. This protocol provides a single-step access to various synthetically useful allylic esters directly from widely available chemical feedstocks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Radical difunctionalization of alkenes.
Fig. 2: Synthetic applications of chiral allylic esters.
Fig. 3: Mechanistic investigation.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information). Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 2167286 (compound 73). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

Change history

References

  1. Zheng, C. & You, S.-L. Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Adv. 4, 6173–6214 (2014).

    Article  CAS  Google Scholar 

  2. Newton, C. G., Wang, S.-G., Oliveira, C. C. & Cramer, N. Catalytic enantioselective transformations involving C–H bond cleavage by transition-metal complexes. Chem. Rev. 117, 8908–8976 (2017).

    Article  CAS  Google Scholar 

  3. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J.-Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    Article  CAS  Google Scholar 

  4. Rouquet, G. & Chatani, N. Catalytic functionalization of C(sp2)–H and C(sp3)–H bonds by using bidentate directing groups. Angew. Chem. Int. Ed. 52, 11726–11743 (2013).

    Article  CAS  Google Scholar 

  5. He, J. et al. Ligand-controlled C(sp3)–H arylation and olefination in synthesis of unnatural chiral α-amino acids. Science 343, 1216–1220 (2014).

    Article  CAS  Google Scholar 

  6. Zhang, F.-L., Hong, K., Li, T.-J., Park, H. & Yu, J.-Q. Functionalization of C(sp3)–H bonds using a transient directing group. Science 351, 252–256 (2016).

    Article  CAS  Google Scholar 

  7. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q. Enantioselective C(sp3)–H bond activation by chiral transition metal catalysts. Science 359, eaao4798 (2018).

    Article  Google Scholar 

  8. Liao, K., Negretti, S., Musaev, D. G., Bacsa, J. & Davies, H. M. L. Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature 533, 230–234 (2016).

    Article  CAS  Google Scholar 

  9. Liao, K. et al. Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature 551, 609–613 (2017).

    Article  CAS  Google Scholar 

  10. Fu, J., Ren, Z., Bacsa, J., Musaev, D. G. & Davies, H. M. L. Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature 564, 395–399 (2018).

    Article  CAS  Google Scholar 

  11. Cao, H., Tang, X., Tang, H., Yuan, Y. & Wu, J. Photoinduced intermolecular hydrogen atom transfer reactions in organic synthesis. Chem Catal. 1, 523–598 (2021).

    Article  Google Scholar 

  12. Capaldo, L., Ravelli, D. & Fagnoni, M. Direct photocatalyzed hydrogen atom transfer (HAT) for aliphatic C–H bonds elaboration. Chem. Rev. 122, 1875–1924 (2022).

    Article  CAS  Google Scholar 

  13. Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    Article  CAS  Google Scholar 

  14. Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature 532, 218–222 (2016).

    Article  CAS  Google Scholar 

  15. Mazzarella, D., Crisenza, G. E. M. & Melchiorre, P. Asymmetric photocatalytic C–H functionalization of toluene and derivatives. J. Am. Chem. Soc. 140, 8439–8443 (2018).

    Article  CAS  Google Scholar 

  16. Li, Y., Lei, M. & Gong, L. Photocatalytic regio- and stereoselective C(sp3)–H functionalization of benzylic and allylic hydrocarbons as well as unactivated alkanes. Nat. Catal. 2, 1016–1026 (2019).

    Article  CAS  Google Scholar 

  17. Li, Z. L., Fang, G. C., Gu, Q. S. & Liu, X. Y. Recent advances in copper-catalysed radical-involved asymmetric 1,2-difunctionalization of alkenes. Chem. Soc. Rev. 49, 32–48 (2020).

    Article  CAS  Google Scholar 

  18. Zhu, S., Zhao, X., Li, H. & Chu, L. Catalytic three-component dicarbofunctionalization reactions involving radical capture by nickel. Chem. Soc. Rev. 50, 10836–10856 (2021).

    Article  CAS  Google Scholar 

  19. Merino, E. & Nevado, C. Addition of CF3 across unsaturated moieties: a powerful functionalization tool. Chem. Soc. Rev. 43, 6598–6608 (2014).

    Article  CAS  Google Scholar 

  20. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive Intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  Google Scholar 

  21. Kaga, A. & Chiba, S. Engaging radicals in transition metal-catalyzed cross-coupling with alkyl electrophiles: recent advances. ACS Catal. 7, 4697–4706 (2017).

    Article  CAS  Google Scholar 

  22. Wang, P.-Z., Xiao, W.-J. & Chen, J.-R. Recent advances in radical-mediated transformations of 1,3-dienes. Chin. J. Catal. 43, 548–557 (2022).

    Article  CAS  Google Scholar 

  23. Huang, H.-M. et al. Catalytic radical generation of π-allylpalladium complexes. Nat. Catal. 3, 393–400 (2020).

    Article  CAS  Google Scholar 

  24. Zhu, R. & Buchwald, S. L. Enantioselective functionalization of radical intermediates in redox catalysis: copper-catalyzed asymmetric oxytrifluoromethylation of alkenes. Angew. Chem. Int. Ed. 52, 12655–12658 (2013).

    Article  CAS  Google Scholar 

  25. Wang, F. et al. Enantioselective copper-catalyzed intermolecular cyanotrifluoromethylation of alkenes via radical process. J. Am. Chem. Soc. 138, 15547–15550 (2016).

    Article  CAS  Google Scholar 

  26. Sha, W. et al. Merging photoredox and copper catalysis: enantioselective radical cyanoalkylation of styrenes. ACS Catal. 8, 7489–7494 (2018).

    Article  CAS  Google Scholar 

  27. Chierchia, M., Xu, P., Lovinger, G. J. & Morken, J. P. Enantioselective radical addition/cross-coupling of organozinc reagents, alkyl iodides, and alkenyl boron reagents. Angew. Chem. Int. Ed. 58, 14245–14249 (2019).

    Article  CAS  Google Scholar 

  28. Lin, J. S. et al. A dual-catalytic strategy to direct asymmetric radical aminotrifluoromethylation of alkenes. J. Am. Chem. Soc. 138, 9357–9360 (2016).

    Article  CAS  Google Scholar 

  29. Wei, X., Shu, W., Garcia-Dominguez, A., Merino, E. & Nevado, C. Asymmetric Ni-catalyzed radical relayed reductive coupling. J. Am. Chem. Soc. 142, 13515–13522 (2020).

    Article  CAS  Google Scholar 

  30. Guo, L. et al. General method for enantioselective three-component carboarylation of alkenes enabled by visible-light dual photoredox/nickel catalysis. J. Am. Chem. Soc. 142, 20390–20399 (2020).

    Article  CAS  Google Scholar 

  31. Tu, H.-Y. et al. Enantioselective three-component fluoroalkylarylation of unactivated olefins through nickel-catalyzed cross-electrophile coupling. J. Am. Chem. Soc. 142, 9604–9611 (2020).

    Article  CAS  Google Scholar 

  32. Lu, F. D., Lu, L. Q., He, G. F., Bai, J. C. & Xiao, W. J. Enantioselective radical carbocyanation of 1,3-dienes via photocatalytic generation of allylcopper complexes. J. Am. Chem. Soc. 143, 4168–4173 (2021).

    Article  CAS  Google Scholar 

  33. Chen, J. et al. Photoinduced copper-catalyzed asymmetric C–O cross-coupling. J. Am. Chem. Soc. 143, 13382–13392 (2021).

    Article  CAS  Google Scholar 

  34. Wang, P. Z. et al. Photoinduced copper-catalyzed asymmetric three-component coupling of 1,3-dienes: an alternative to Kharasch–Sosnovsky reaction. Angew. Chem. Int. Ed. 60, 22956–22962 (2021).

    Article  CAS  Google Scholar 

  35. Zhang, Y. et al. Copper-catalyzed photoinduced enantioselective dual carbofunctionalization of alkenes. Org. Lett. 22, 1490–1494 (2020).

    Article  CAS  Google Scholar 

  36. Zhu, X. et al. Asymmetric radical carboesterification of dienes. Nat. Commun. 12, 6670 (2021).

    Article  CAS  Google Scholar 

  37. Ge, L. et al. Iron-catalysed asymmetric carboazidation of styrenes. Nat. Catal. 4, 28–35 (2021).

    Article  CAS  Google Scholar 

  38. Campbell, M. W., Yuan, M., Polites, V. C., Gutierrez, O. & Molander, G. A. Photochemical C–H activation enables nickel-catalyzed olefin dicarbofunctionalization. J. Am. Chem. Soc. 143, 3901–3910 (2021).

    Article  CAS  Google Scholar 

  39. Xu, S., Chen, H., Zhou, Z. & Kong, W. Three-component alkene difunctionalization by direct and selective activation of aliphatic C–H bonds. Angew. Chem. Int. Ed. 60, 7405–7411 (2021).

    Article  CAS  Google Scholar 

  40. Ouyang, X.-H. et al. Intermolecular dialkylation of alkenes with two distinct C(sp3)–H bonds enabled by synergistic photoredox catalysis and iron catalysis. Sci. Adv. 5, eaav9839 (2019).

    Article  CAS  Google Scholar 

  41. Kharasch, M. S. & Sosnovsky, G. The reactions of t-butyl perbenzoate and olefins—a stereospecific reaction. J. Am. Chem. Soc. 80, 756–756 (1958).

    Article  CAS  Google Scholar 

  42. Kharasch, M. S., Sosnovsky, G. & Yang, N. C. Reactions of t-butyl peresters. I. The reaction of peresters with olefins. J. Am. Chem. Soc. 81, 5819–5824 (1959).

    Article  CAS  Google Scholar 

  43. Lashley, J. C. Copper catalyzed allylic oxidation with peresters. Tetrahedron 58, 845–866 (2002).

    Article  Google Scholar 

  44. Zhang, B., Zhu, S.-F. & Zhou, Q.-L. Copper-catalyzed enantioselective allylic oxidation of acyclic olefins. Tetrahedron Lett. 54, 2665–2668 (2013).

    Article  CAS  Google Scholar 

  45. Lumbroso, A., Cooke, M. L. & Breit, B. Catalytic asymmetric synthesis of allylic alcohols and derivatives and their applications in organic synthesis. Angew. Chem. Int. Ed. 52, 1890–1932 (2013).

    Article  CAS  Google Scholar 

  46. Zhu, R. & Buchwald, S. L. Versatile enantioselective synthesis of functionalized lactones via copper-catalyzed radical oxyfunctionalization of alkenes. J. Am. Chem. Soc. 137, 8069–8077 (2015).

    Article  CAS  Google Scholar 

  47. Tunpanich, P., Limpongsa, E., Pongjanyakul, T., Sripanidkulchai, B. & Jaipakdee, N. Mucoadhesive sustained-release tablets for vaginal delivery of Curcuma comosa extracts: preparation and characterization. J. Drug Deliv. Sci. Technol. 51, 559–568 (2019).

    Article  CAS  Google Scholar 

  48. Watthey, J. W. H., Stanton, J. L., Desai, M., Babiarz, J. E. & Finn, B. M. Synthesis and biological properties of (carboxyalkyl)amino-substituted bicyclic lactam inhibitors of angiotensin converting enzyme. J. Med. Chem. 28, 1511–1516 (1985).

    Article  CAS  Google Scholar 

  49. Yanagisawa, H. et al. Angiotensin-converting enzyme inhibitors. 2. Perhydroazepin-2-one derivatives. J. Med. Chem. 31, 422–428 (1988).

    Article  CAS  Google Scholar 

  50. Liu, L. et al. Nostosins, trypsin inhibitors isolated from the terrestrial cyanobacterium Nostoc sp. strain FSN. J. Nat. Prod. 77, 1784–1790 (2014).

    Article  CAS  Google Scholar 

  51. Wang, X. et al. Total synthesis and stereochemical assignment of nostosin B. Mar Drugs 15, 58 (2017).

    Article  Google Scholar 

  52. Urban, F. J. & Moore, B. S. Synthesis of optically active 2-benzyldihydrobenzopyrans for the hypoglycemic agent englitazone. J. Heterocyclic Chem. 29, 431–438 (1992).

    Article  CAS  Google Scholar 

  53. Tian, B., Chen, P., Leng, X. & Liu, G. Palladium-catalysed enantioselective diacetoxylation of terminal alkenes. Nat. Catal. 4, 172–179 (2021).

    Article  CAS  Google Scholar 

  54. Martynow, J. G. et al. A new synthetic approach to high-purity (15R)-latanoprost. Eur. J. Org. Chem. 2007, 689–703 (2007).

    Article  Google Scholar 

  55. Andrus, M. B. & Zhou, Z. Highly enantioselective copper−bisoxazoline-catalyzed allylic oxidation of cyclic olefins with tert-butyl p-nitroperbenzoate. J. Am. Chem. Soc. 124, 8806–8807 (2002).

    Article  CAS  Google Scholar 

  56. Walling, C. & Zavitsas, A. A. The copper-catalyzed reaction of peresters with hydrocarbons. J. Am. Chem. Soc. 85, 2084–2090 (1963).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key R&D Program of China (2021YFA1500100) and NSFC (22188101) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

L.-Z.G. and L.-F.F. conceived the project. L.-F.F., R.L. and X.-Y.R. performed the experiments and analysed the data. L.-Z.G. and P-S.W. supervised the research. L.-F.F. and L.-Z.G. co-wrote the manuscript.

Corresponding author

Correspondence to Liu-Zhu Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Wangqing Kong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–4, NMR spectra, HPLC data and Tables 1–8.

Supplementary Data 1

Crystallographic data for compound 73, CCDC 2167286.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, LF., Liu, R., Ruan, XY. et al. Asymmetric 1,2-oxidative alkylation of conjugated dienes via aliphatic C–H bond activation. Nat. Synth 1, 946–955 (2022). https://doi.org/10.1038/s44160-022-00172-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00172-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing