Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flux-assisted growth of atomically thin materials


The desirable properties of atomically thin materials (ATMs) have encouraged development of preparation methods. However, many multi-element layered and non-layered ATMs are still difficult to be fabricated in a controlled manner. Here we design a flux-assisted growth approach to overcome these limitations that can reproducibly prepare high-quality ATMs, such as metal chalcogenides, oxides, oxyhalides and phosphorous trichalcogenides, and is tolerant to growth parameters such as temperature and flow rate. In this approach, target materials nucleate and crystallize following a flux-crystallization mechanism, enabling precise control of their stoichiometry. ATMs are guaranteed by the confined synthetic space and kinetically driven growth. Eighty atomically thin composite flakes, including 48 ternary or quaternary compounds and 23 non-layered materials, have been successfully prepared by this approach. Furthermore, large single crystals or continuous films of ATMs can be prepared by the same method. This proposed flux-crystallization mechanism offers great possibilities to fabricate ATMs with good stoichiometry control and non-layered structures that possess interesting physical and chemical properties.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Growth process and synthesis mechanisms of FAG.
Fig. 2: Optical microscopy images of the 80 different ATMs and extended large-size crystals grown by FAG.
Fig. 3: Structural and chemical analysis of four representative as-synthesized 2D materials.
Fig. 4: The different property characterizations of two specific samples obtained by FAG.

Data availability

The additional characterization data and experimental data are provided in the Supplementary Information and Supplementary Video. Source data are provided with this paper.


  1. Bergeron, H. et al. Polymorphism in post-dichalcogenide two-dimensional materials. Chem. Rev. 121, 2713–2775 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Zhou, J. D. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Nguyen, V. L. et al. Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, T. A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, L. et al. Epitaxial growth of a 100-square-centimetre singlecrystal hexagonal boron nitride monolayer on copper. Nature 570, 91–95 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Zhao, Y. Z. et al. Supertwisted spirals of layered materials enabled by growth on non-Euclidean surfaces. Science 370, 442–445 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Hong, Y. L. et al. Chemical vapor deposition of layered two-dimensional MoSi2N4 materials. Science 369, 670–674 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Shivayogimath, A. et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat. Commun. 10, 2957 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gong, Y. J. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, J. D. et al. Composition and phase engineering of metal chalcogenides and phosphorous chalcogenides. Nat. Mater. (2022).

  12. Xie, S. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131–1136 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gong, Y. J. et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat. Nanotechnol. 13, 294–299 (2018).

    Article  CAS  PubMed  Google Scholar 

  17. Lei, S. D. et al. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry. Nat. Nanotechnol. 11, 465–471 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Ma, W. L. et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature 562, 557–562 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Hu, G. W. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Wu, J. X. et al. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12, 530–534 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Manzeli, S. et al. Self-sensing, tunable monolayer MoS2 nanoelectromechanical resonators. Nat. Commun. 10, 4831 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chen, X. et al. CVD-grown monolayer MoS2 in bioabsorbable electronics and biosensors. Nat. Commun. 9, 1690 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Gu, Y., Zhang, S. Q. & Zou, X. L. Tunable magnetism in layered CoPS3 by pressure and carrier doping. Sci. China Mater. 64, 673–682 (2021).

    Article  CAS  Google Scholar 

  27. Deng, Y. J. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, F. et al. Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 5, eaav5003 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    Article  CAS  Google Scholar 

  31. Zhao, X. Y. et al. Engineering covalently bonded 2D layered materials by self-intercalation. Nature 581, 171–177 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Jin, S. et al. Colossal grain growth yields single-crystal metal foils by contact-free annealing. Science 362, 1021–1025 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Niu, L. et al. Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy 58, 596–603 (2019).

    Article  CAS  Google Scholar 

  34. Chittari, B. L. et al. Electronic and magnetic properties of single-layer MPX3 metal phosphorous trichalcogenides. Phys. Rev. B 94, 184428 (2016).

    Article  Google Scholar 

  35. Liu, Y. et al. Anomalous Hall effect in the weak-itinerant ferrimagnet FeCr2Te4. Phys. Rev. B 103, 045106 (2021).

    Article  CAS  Google Scholar 

  36. Lei, S. M. et al. High mobility in a van der Waals layered antiferromagnetic metal. Sci. Adv. 6, eaay6407 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peng, B. et al. Phase transition enhanced superior elasticity in freestanding single crystalline multiferroic BiFeO3 membranes. Sci. Adv. 6, eaba5847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, C. S. et al. Magnetic and thermodynamic properties of α, β, γ and δ-MnO2. New J. Chem. 42, 8400–8407 (2018).

    Article  CAS  Google Scholar 

  39. Li, H. D. et al. Two-dimensional metal telluride atomic crystals: preparation, physical properties, and applications. Adv. Funct. Mater. 31, 2010901 (2021).

    Article  CAS  Google Scholar 

  40. Zhou, S. S. et al. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and Raman scattering investigation. Adv. Funct. Mater. 29, 1805880 (2019).

    Article  Google Scholar 

  41. Barin, I. Thermochemical Data of Pure Substances 3rd edn (VCH, 1995).

  42. Benz, K. W. et al. Growth of cadmium telluride from the vapor phase under low gravity conditions. Prog. Cryst. Growth Charact. Mater. 48/49, 189–208 (2004).

    Article  CAS  Google Scholar 

  43. Li, T. T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, J. H. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal α-plane sapphire. Nat. Nanotechnol. 17, 33–38 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by the National Key R&D Program of China (grant number 2018YFA0306900), the Natural Science Foundation of China (22171016, 51872012, 21821004, 21932001) and the Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039). Part of calculations were supported by the high-performance computing (HPC) resources at Beihang University.

Author information

Authors and Affiliations



Y.G., K.W. and P.Z. conceived and designed the experiments. P.Z., X.W., H.J. and Y.Z. synthesized the materials. X.W., H.J., Q.H. and H.Q. prepared the reaction powders by chemical vapour transport. P.Z., Q.H., X.W., H.J. and F.Z. performed the HRTEM characterizations of all samples, P.Z., X.W., H.J., Y.Z. and W.Z. worked on the analysis of HRTEM results. P.Z. and X.W. performed the AFM characterization of the samples. P.Z., B.L. and Y.Z. carried out Raman characterizations. K.S. performed device fabrication and measurement. A.C. and Z.H. carried out the PFM measurements. P.Z., X.W., H.J., K.W. and Y.G. wrote the paper with inputs from F.Z., Y.W., L.L., K.S. P.T. and W.Z. All authors participated in discussions and approved the manuscript.

Corresponding authors

Correspondence to Kai Wu or Yongji Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Lei Liu, Youngdong Yoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–155, Discussion and Tables 1–4.

Supplementary Video 1

In situ growth observation of Fe3GeTe2.

Supplementary Video 2

In situ growth observation of CoTe2.

Supplementary Video 3

In situ growth observation of NiTe2.

Source data

Source Data Fig. 1

Data used to generate histogram graphs.

Source Data Fig. 3

Data used to generate energy-dispersive spectroscopy curves.

Source Data Fig. 4

Data used to generate graphs.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Wang, X., Jiang, H. et al. Flux-assisted growth of atomically thin materials. Nat. Synth 1, 864–872 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing