Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials

Abstract

The intercalation-based exfoliation of layered materials is a broadly applicable strategy for the scalable production of atomically thin (from mono- to few-layer) sheets, including graphene, black phosphorus, hexagonal boron nitride and transition metal dichalcogenides. This strategy typically involves the intercalation of foreign species (ions or small molecules) into the interlayer spaces of layered materials, followed by a mild exfoliation process (spontaneously or via bath sonication, stirring or manual shaking). In this Review we introduce several intercalation-based exfoliation methods and highlight the factors that influence the quality of exfoliated nanosheets. In addition, we introduce the phase-transition phenomena involved in intercalation-based exfoliation, which may induce the resultant nanosheets to differ electronically and structurally from their bulk counterparts. Finally, we discuss potential commercial applications, focusing on devices (such as various electronic, photonic, photoelectric and energy devices) and catalysis (including photocatalysis and electrocatalysis).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key developments in the study of intercalation-based exfoliation for the synthesis of atomically thin sheets.
Fig. 2: Schematic illustration of intercalation-based exfoliation.
Fig. 3: Li+ intercalation-based exfoliation.
Fig. 4: R4N+-ion, anion and molecular intercalation-based exfoliation.
Fig. 5: Factors influencing the qualities of exfoliated nanosheets.
Fig. 6: Phase transitions during the intercalation-based exfoliation process.

References

  1. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Pinilla, S., Coelho, J., Li, K., Liu, J. & Nicolosi, V. Two-dimensional material inks. Nat. Rev. Mater. 7, 717–735 (2022).

    Article  Google Scholar 

  4. Nicolosi, V., Chhowalla, M., Kanatzidis, M. G., Strano, M. S. & Coleman, J. N. Liquid exfoliation of layered materials. Science 340, 1226419 (2013).

    Article  Google Scholar 

  5. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, R. et al. High-yield production of mono- or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method. Nat. Protoc. 17, 358–377 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Kelly, A. G., O’Suilleabhain, D., Gabbett, C. & Coleman, J. N. The electrical conductivity of solution-processed nanosheet networks. Nat. Rev. Mater. 7, 217–234 (2022).

    Article  CAS  Google Scholar 

  10. Jeong, S. et al. Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nat. Commun. 6, 5763 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2. Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  12. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Vallés, C. et al. Solutions of negatively charged graphene sheets and ribbons. J. Am. Chem. Soc. 130, 15802–15804 (2008).

    Article  PubMed  Google Scholar 

  14. Cullen, P. L. et al. Ionic solutions of two-dimensional materials. Nat. Chem. 9, 244–249 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Kang, Y.-J., Jung, S. C., Choi, J. W. & Han, Y.-K. Important role of functional groups for sodium ion intercalation in expanded graphite. Chem. Mater. 27, 5402–5406 (2015).

    Article  CAS  Google Scholar 

  16. Parvez, K. et al. Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J. Am. Chem. Soc. 136, 6083–6091 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, N. et al. Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation. ACS Nano 8, 6902–6910 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Lu, J. et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Liu, Z. et al. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 11, 3917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Acerce, M., Voiry, D. & Chhowalla, M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 10, 313–318 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Fan, X. et al. Controlled exfoliation of MoS2 crystals into trilayer nanosheets. J. Am. Chem. Soc. 138, 5143–5149 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Peng, J. et al. Very large-sized transition metal dichalcogenides monolayers from fast exfoliation by manual shaking. J. Am. Chem. Soc. 139, 9019–9025 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Peng, J. et al. High phase purity of large-sized 1T′-MoS2 monolayers with 2D superconductivity. Adv. Mater. 31, 1900568 (2019).

    Article  Google Scholar 

  28. Tsai, H.-L., Heising, J., Schindler, J. L., Kannewurf, C. R. & Kanatzidis, M. G. Exfoliated–restacked phase of WS2. Chem. Mater. 9, 879–882 (1997).

    Article  CAS  Google Scholar 

  29. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Zheng, J. et al. High yield exfoliation of two-dimensional chalcogenides using sodium naphthalenide. Nat. Commun. 5, 2995 (2014).

    Article  PubMed  Google Scholar 

  31. Zhu, X. et al. Exfoliation of MoS2 nanosheets enabled by a redox-potential-matched chemical lithiation reaction. Nano Lett. 22, 2956–2963 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Watts, M. C. et al. Production of phosphorene nanoribbons. Nature 568, 216–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    Article  CAS  Google Scholar 

  34. Zeng, Z. et al. An effective method for the fabrication of few-layer-thick inorganic nanosheets. Angew. Chem. Int. Ed. 51, 9052–9056 (2012).

    Article  CAS  Google Scholar 

  35. Zhang, X. et al. Lithiation-induced amorphization of Pd3P2S8 for highly efficient hydrogen evolution. Nat. Catal. 1, 460–468 (2018).

    Article  CAS  Google Scholar 

  36. Chen, W. et al. Two-dimensional quantum-sheet films with sub-1.2 nm channels for ultrahigh-rate electrochemical capacitance. Nat. Nanotechnol. 17, 153–158 (2022).

    Article  CAS  PubMed  Google Scholar 

  37. Lu, L. et al. Broadband nonlinear optical response in few-layer antimonene and antimonene quantum dots: a promising optical Kerr media with enhanced stability. Adv. Opt. Mater. 5, 1700301 (2017).

    Article  Google Scholar 

  38. Li, F. et al. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material. Angew. Chem. Int. Ed. 56, 14718–14722 (2017).

    Article  CAS  Google Scholar 

  39. García-Dalí, S. et al. Aqueous cathodic exfoliation strategy toward solution-processable and phase-preserved MoS2 nanosheets for energy storage and catalytic applications. ACS Appl. Mater. Interfaces 11, 36991–37003 (2019).

    Article  PubMed  Google Scholar 

  40. Yang, S. et al. A delamination strategy for thinly layered defect-free high-mobility black phosphorus flakes. Angew. Chem. Int. Ed. 57, 4677–4681 (2018).

    Article  CAS  Google Scholar 

  41. Zhang, X. et al. Atomically thin PdSeO3 nanosheets: a promising 2D photocatalyst produced by quaternary ammonium intercalation and exfoliation. Chem. Commun. 56, 5504–5507 (2020).

    Article  CAS  Google Scholar 

  42. Li, J. et al. Printable two-dimensional superconducting monolayers. Nat. Mater. 20, 181–187 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, W. et al. Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 33, 2102083 (2021).

    Article  CAS  Google Scholar 

  44. Cooper, A. J., Wilson, N. R., Kinloch, I. A. & Dryfe, R. A. W. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66, 340–350 (2014).

    Article  CAS  Google Scholar 

  45. Huang, Z. et al. Layer-tunable phosphorene modulated by the cation insertion rate as a sodium-storage anode. Adv. Mater. 29, 1702372 (2017).

    Article  Google Scholar 

  46. Jeon, I., Yoon, B., He, M. & Swager, T. M. Hyperstage graphite: electrochemical synthesis and spontaneous reactive exfoliation. Adv. Mater. 30, 1704538 (2018).

    Article  Google Scholar 

  47. Li, J. et al. Ultrafast electrochemical expansion of black phosphorus toward high-yield synthesis of few-layer phosphorene. Chem. Mater. 30, 2742–2749 (2018).

    Article  CAS  Google Scholar 

  48. Zhang, Y. & Xu, Y. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene. Adv. Funct. Mater. 29, 1902171 (2019).

    Article  Google Scholar 

  49. Wang, N. et al. Electrochemical delamination of ultralarge few-layer black phosphorus with a hydrogen-free intercalation mechanism. Adv. Mater. 33, 2005815 (2021).

    Article  CAS  Google Scholar 

  50. Shi, H. et al. Ultrafast electrochemical synthesis of defect-free In2Se3 flakes for large-area optoelectronics. Adv. Mater. 32, 1907244 (2020).

    Article  CAS  Google Scholar 

  51. Lin, Z. et al. High-yield exfoliation of 2D semiconductor monolayers and reassembly of organic/inorganic artificial superlattices. Chem 7, 1887–1902 (2021).

    Article  CAS  Google Scholar 

  52. Peng, J. et al. Stoichiometric two-dimensional non-van der Waals AgCrS2 with superionic behaviour at room temperature. Nat. Chem. 13, 1235–1240 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Zhong, Y. L. & Swager, T. M. Enhanced electrochemical expansion of graphite for in situ electrochemical functionalization. J. Am. Chem. Soc. 134, 17896–17899 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Yu, W. et al. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater. 31, 1903779 (2019).

    Article  CAS  Google Scholar 

  55. Yu, W. et al. Domain engineering in ReS2 by coupling strain during electrochemical exfoliation. Adv. Funct. Mater. 30, 2003057 (2020).

    Article  CAS  Google Scholar 

  56. Yu, W. et al. High-yield exfoliation of monolayer 1T′-MoTe2 as saturable absorber for ultrafast photonics. ACS Nano 15, 18448–18457 (2021).

    Article  CAS  PubMed  Google Scholar 

  57. Su, C.-Y. et al. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5, 2332–2339 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Parvez, K. et al. Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7, 3598–3606 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Yang, S. et al. Organic radical-assisted electrochemical exfoliation for the scalable production of high-quality graphene. J. Am. Chem. Soc. 137, 13927–13932 (2015).

    Article  CAS  PubMed  Google Scholar 

  60. Liu, N. et al. One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008).

    Article  CAS  Google Scholar 

  61. Zhou, F. et al. Electrochemically scalable production of fluorine-modified graphene for flexible and high-energy ionogel-based microsupercapacitors. J. Am. Chem. Soc. 140, 8198–8205 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Ambrosi, A. & Pumera, M. Electrochemically exfoliated graphene and graphene oxide for energy storage and electrochemistry applications. Chem. Eur. J. 22, 153–159 (2016).

    Article  CAS  PubMed  Google Scholar 

  63. Liu, J. et al. Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy 2, 377–386 (2013).

    Article  CAS  Google Scholar 

  64. Rao, K. S., Senthilnathan, J., Liu, Y.-F. & Yoshimura, M. Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite. Sci. Rep. 4, 4237 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang, G. et al. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 47, 3242–3246 (2009).

    Article  CAS  Google Scholar 

  66. Ambrosi, A., Sofer, Z. & Pumera, M. Electrochemical exfoliation of layered black phosphorus into phosphorene. Angew. Chem. Int. Ed. 56, 10443–10445 (2017).

    Article  CAS  Google Scholar 

  67. Ambrosi, A., Sofer, Z., Luxa, J. & Pumera, M. Exfoliation of layered topological insulators Bi2Se3 and Bi2Te3 via electrochemistry. ACS Nano 10, 11442–11448 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Ding, Y. et al. Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent. J. Am. Chem. Soc. 139, 9136–9139 (2017).

    Article  CAS  PubMed  Google Scholar 

  69. Peng, Y. et al. Metal–organic framework nanosheets as building blocks for molecular sieving membranes. Science 346, 1356–1359 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2. ACS Nano 6, 7311–7317 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 3, 563–568 (2008).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, Y. et al. Phase engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256 (2020).

    Article  CAS  Google Scholar 

  73. Li, W., Qian, X. & Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 6, 829–846 (2021).

    Article  CAS  Google Scholar 

  74. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014).

    Article  CAS  Google Scholar 

  75. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  76. Yang, H., Kim, S. W., Chhowalla, M. & Lee, Y. H. Structural and quantum-state phase transitions in van der Waals layered materials. Nat. Phys. 13, 931–937 (2017).

    Article  CAS  Google Scholar 

  77. Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    Article  CAS  PubMed  Google Scholar 

  78. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    Article  CAS  PubMed  Google Scholar 

  79. Zhao, W., Ribeiro, R. M. & Eda, G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 48, 91–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  80. Zhou, Z. et al. Metallic 1T phase enabling MoS2 nanodots as an efficient agent for photoacoustic imaging guided photothermal therapy in the near-infrared-II window. Small 16, 2004173 (2020).

    Article  CAS  Google Scholar 

  81. Fan, X. et al. Fast and efficient preparation of exfoliated 2H MoS2 nanosheets by sonication-assisted lithium intercalation and infrared laser-induced 1T to 2H phase reversion. Nano Lett. 15, 5956–5960 (2015).

    Article  CAS  PubMed  Google Scholar 

  82. Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  CAS  PubMed  Google Scholar 

  83. Li, Y., Duerloo, K.-A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    Article  CAS  PubMed  Google Scholar 

  85. Kumbhakar, P. et al. Emerging 2D metal oxides and their applications. Mater. Today 45, 142–168 (2021).

    Article  CAS  Google Scholar 

  86. Li, X. et al. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3, 538–542 (2008).

    Article  CAS  PubMed  Google Scholar 

  87. Zhu, J. et al. Layer-by-layer assembled 2D montmorillonite dielectrics for solution-processed electronics. Adv. Mater. 28, 63–68 (2016).

    Article  CAS  PubMed  Google Scholar 

  88. Zhu, J. et al. Solution-processed dielectrics based on thickness-sorted two-dimensional hexagonal boron nitride nanosheets. Nano Lett. 15, 7029–7036 (2015).

    Article  PubMed  Google Scholar 

  89. Mei, L. et al. Simultaneous electrochemical exfoliation and covalent functionalization of MoS2 membrane for ion sieving. Adv. Mater. 34, 2201416 (2022).

    Article  CAS  Google Scholar 

  90. Yan, Z. et al. Highly stretchable van der Waals thin films for adaptable and breathable electronic membranes. Science 375, 852–859 (2022).

    Article  CAS  PubMed  Google Scholar 

  91. Zhu, C. et al. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 135, 5998–6001 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Li, J., Zhan, G., Yu, Y. & Zhang, L. Superior visible light hydrogen evolution of Janus bilayer junctions via atomic-level charge flow steering. Nat. Commun. 7, 11480 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Huang, J. et al. Electrochemical exfoliation of pillared-layer metal–organic framework to boost the oxygen evolution reaction. Angew. Chem. Int. Ed. 57, 4632–4636 (2018).

    Article  CAS  Google Scholar 

  94. Zhang, S. et al. MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12, 751–758 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Shi, Y. et al. Van Der Waals gap-rich BiOCl atomic layers realizing efficient, pure-water CO2-to-CO photocatalysis. Nat. Commun. 12, 5923 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    Article  Google Scholar 

  97. Li, X. et al. Ordered clustering of single atomic Te vacancies in atomically thin PtTe2 promotes hydrogen evolution catalysis. Nat. Commun. 12, 2351 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lai, Z. et al. High-yield exfoliation of ultrathin 2D Ni3Cr2P2S9 and Ni3Cr2P2Se9 nanosheets. Small 17, 2006866 (2021).

    Article  CAS  Google Scholar 

  99. Mounet, N. et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246–252 (2018).

    Article  CAS  PubMed  Google Scholar 

  100. Morgan, D. et al. Machine learning in nuclear materials research. Curr. Opin. Solid State Mater. Sci. 26, 100975 (2022).

    Article  CAS  Google Scholar 

  101. Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Xiong, F. et al. Li Intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett. 15, 6777–6784 (2015).

    Article  CAS  PubMed  Google Scholar 

  103. Yang, R. et al. Fabrication of liquid cell for in-situ transmission electron microscopy of electrochemical processes. Nat. Protoc. https://doi.org/10.1038/s41596-022-00762-y (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wang, C. et al. Monolayer atomic crystal molecular superlattices. Nature 555, 231–236 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Zhai, X. et al. Direct observation of the light-induced exfoliation of molybdenum disulfide sheets in water medium. ACS Nano 15, 5661–5670 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Kong, W. et al. Path towards graphene commercialization from lab to market. Nat. Nanotechnol. 14, 927–938 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Walker, G. F. & Garrett, W. G. Chemical exfoliation of vermiculite and the production of colloidal dispersions. Science 156, 385–387 (1967).

    Article  CAS  PubMed  Google Scholar 

  108. Murphy, D. W. & Hull, G. W.Jr Monodispersed tantalum disulfide and adsorption complexes with cations. J. Chem. Phys. 62, 973–978 (1975).

    Article  CAS  Google Scholar 

  109. Liu, C., Singh, O., Joensen, P., Curzon, A. E. & Frindt, R. F. X-ray and electron microscopy studies of single-layer TaS2 and NbS2. Thin Solid Films 113, 165–172 (1984).

    Article  CAS  Google Scholar 

  110. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  Google Scholar 

  111. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  112. Zhu, J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 139, 10216–10219 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.Z. thanks the ECS scheme (CityU9048163) from RGC in Hong Kong and the Basic Research Project from the Shenzhen Science and Technology Innovation Committee in Shenzhen, China (No. JCYJ20210324134012034). Q.L. thanks the Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant and the Alberta Innovates Advance Program-NSERC Alliance Grant.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. proposed the topic of the Review. R.Y., J.L. and Z.Z. drafted the manuscript. H.S.S., D.V. and Q.L. revised the manuscript. Y.F. and L.M. contributed to the data collection for the manuscript.

Corresponding authors

Correspondence to Ju Li or Zhiyuan Zeng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Alexandra Groves, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–5 and refs. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Fan, Y., Mei, L. et al. Synthesis of atomically thin sheets by the intercalation-based exfoliation of layered materials. Nat. Synth 2, 101–118 (2023). https://doi.org/10.1038/s44160-022-00232-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00232-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing