Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visible light activation enables desulfonylative cross-coupling of glycosyl sulfones

Abstract

Identifying a general bench-stable precursor of multifunctional sugar residues that is also amenable to further activation under mild conditions remains a great challenge in carbohydrate chemistry. Here, we show that heteroaryl glycosyl sulfones undergo desulfonylative cross-coupling with electrophiles in the presence of a Hantzsch ester and a weak base under visible light illumination at ambient temperature. Illumination was found to initiate the reactivity of an in situ-generated Hantzsch ester–base complex, triggering single-electron transfer steps that activate sulfones and afford glycosyl radicals, which are readily utilized for a range of stereocontrolled carbon–carbon and carbon–sulfur bond formations. Importantly, the heteroaryl glycosyl sulfones can be synthesized on a multi-gram scale. Furthermore, this catalyst- and transition metal-free approach enables sulfone donors of various monosaccharides and glycans to be transformed to synthetically valuable glycosides with high stereochemical purity and broad functional group tolerance. This method overcomes previous limitations in scope, scalability and donor instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The importance of C-glycosides and synthetic approaches to access them via glycosyl radicals.
Fig. 2: Reaction development and mechanistic investigations.

Similar content being viewed by others

Data availability

All of the data are available within the text and Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers 2130777 (compound 18), 2126413 (compound SI-8), 2126409 (compound S-d12), 2126410 (compound S-d9) and 2126412 (compound S-d6).

References

  1. Kocovsky, P. C-nucleosides: synthetic strategies and biological applications. Chem. Rev. 109, 6729–6764 (2009).

    Article  Google Scholar 

  2. Yang, Y. & Yu, B. Recent advances in the chemical synthesis of C-glycosides. Chem. Rev. 117, 12281–12356 (2017).

    Article  CAS  Google Scholar 

  3. De Leder Kremer, R. M. & Gallo-Rodriquez, C. Naturally occurring monosaccharides: properties and synthesis. Adv. Carbohydr. Chem. Biochem. 59, 9–67 (2004).

    Article  CAS  Google Scholar 

  4. Bennett, C. S. & Galan, M. C. Methods for 2-deoxyglycoside synthesis. Chem. Rev. 118, 7931–7985 (2018).

    Article  CAS  Google Scholar 

  5. Behera, A. & Kulkarni, S. S. Chemical synthesis of rare, deoxy-amino sugars containing bacterial glycoconjugates as potential vaccine candidates. Molecules 23, 1997 (2018).

    Article  Google Scholar 

  6. Balagurunathan, K., Nakato, H., Desai, U. & Saijoh, Y. Glycosaminoglycans: Methods and Protocols 2nd edn (Springer, 2016).

  7. Schauer, R. & Kamerling, J. P. Chemistry, biochemistry and biology of sialic acids. New Compr. Biochem. 29, 243–402 (1997).

    Article  Google Scholar 

  8. Liao, H., Ma, J., Yao, H. & Liu, X.-W. Recent progress of C-glycosylation methods in the total synthesis of natural products and pharmaceuticals. Org. Biomol. Chem. 16, 1791–1806 (2018).

    Article  CAS  Google Scholar 

  9. Bokor, É. et al. C-glycopyranosyl arenes and hetarenes: synthetic methods and bioactivity focused on antidiabetic potential. Chem. Rev. 117, 1687–1764 (2017).

    Article  CAS  Google Scholar 

  10. Zou, W. C-glycosides and aza-C-glycosides as potential glycosidase and glycosyltransferase inhibitors. Curr. Top. Med. Chem. 5, 1363–1391 (2005).

    Article  CAS  Google Scholar 

  11. Dondoni, A. & Marra, A. Methods for anomeric carbon-linked and fused sugar amino acid synthesis: the gateway to artificial glycopeptides. Chem. Rev. 100, 4395–4422 (2000).

    Article  CAS  Google Scholar 

  12. Yang, G., Schmieg, J., Tsuji, M. & Franck, R. W. The C-glycoside analogue of the immunostimulant α-galactosylceramide (KRN7000): synthesis and striking enhancement of activity. Angew. Chem. Int. Ed. 43, 3818–3822 (2004).

    Article  CAS  Google Scholar 

  13. Xu, L.-Y., Fan, N.-L. & Hu, X.-G. Recent development in the synthesis of C-glycosides involving glycosyl radicals. Org. Bio. Chem. 18, 5095–5109 (2020).

    Article  CAS  Google Scholar 

  14. Chen, A. et al. Recent advances in glycosylation involving novel anomeric radical precursors. J. Carbohydr. Chem. 40, 361–400 (2022).

    Article  Google Scholar 

  15. Yang, Y., Zhang, X. & Yu, B. O-Glycosylation methods in the total synthesis of complex natural glycosides. Nat. Prod. Rep. 32, 1331–1355 (2015).

    Article  CAS  Google Scholar 

  16. Jiang, Y., Wang, Q., Zhang, X. & Koh, M. J. Synthesis of C-glycosides by Ti-catalyzed stereoselective glycosyl radical functionalization. Chem 7, 3377–3392 (2021).

    Article  CAS  Google Scholar 

  17. De Vicente, J., Betzemeier, B. & Rychnovsky, S. D. A C-glycosidation approach to the central core of amphidinol 3: synthesis of the C39–C52 fragment. Org. Lett. 7, 1853–1856 (2005).

    Article  CAS  Google Scholar 

  18. Zhou, X. et al. Transition-metal-free synthesis of C-glycosylated phenanthridines via K2S2O8-mediated oxidative radical decarboxylation of uronic acids. J. Org. Chem. 83, 588–603 (2018).

    Article  CAS  Google Scholar 

  19. Roe, B. A., Boojamra, C. G., Griggs, J. L. & Bertozzi, C. R. Synthesis of β-C-glycosides of N-acetylglucosamine via Keck allylation directed by neighboring phthalimide groups. J. Org. Chem. 61, 6442–6445 (1996).

    Article  CAS  Google Scholar 

  20. Masuda, K., Nagatomo, M. & Inoue, M. Direct assembly of multiply oxygenated carbon chains by decarbonylative radical–radical coupling reactions. Nat. Chem. 9, 207–212 (2016).

    Article  Google Scholar 

  21. Shang, W. et al. Generation of glycosyl radicals from glycosyl sulfoxides and its use in the synthesis of C-linked glycoconjugates. Angew. Chem. Int. Ed. 60, 385–390 (2021).

    Article  CAS  Google Scholar 

  22. Miquel, N., Doisneau, G. & Beau, J. M. Reductive samariation of anomeric 2-pyridylsulfones with catalytic nickel: an unexpected improvement in the synthesis of 1,2-trans-diequatorial C-glycosyl compounds. Angew. Chem. Int. Ed. 39, 4111–4114 (2000).

    Article  CAS  Google Scholar 

  23. Mazkas, D., Skrydstrup, T., Doumeix, O. & Beau, J. M. Samarium iodide induced intramolecular C-glycoside formation: efficient radical formation in the absence of an additive. Angew. Chem. Int. Ed. 33, 1383–1386 (1994).

    Article  Google Scholar 

  24. Mazkas, D., Skrydstrup, T. & Beau, J. M. A highly stereoselective synthesis of 1,2-trans-C-glycosides via glycosyl samariurn(iii) compounds. Angew. Chem. Int. Ed. 34, 909–912 (1995).

    Article  Google Scholar 

  25. Adak, A. et al. Synthesis of aryl C-glycosides via iron-catalyzed cross coupling of halosugars: stereoselective anomeric arylation of glycosyl radicals. J. Am. Chem. Soc. 139, 10693–10701 (2017).

    Article  CAS  Google Scholar 

  26. Wei, Y., Ben-zvi, B. & Diao, T. Diastereoselective synthesis of aryl C-glycosides from glycosyl esters via C–O bond homolysis. Angew. Chem. Int. Ed. 60, 9433–9438 (2021).

    Article  CAS  Google Scholar 

  27. Gong, H. & Gagné, M. R. Diastereoselective Ni-catalyzed Negishi cross-coupling approach to saturated, fully oxygenated C-alkyl and C-aryl glycosides. J. Am. Chem. Soc. 130, 12177–12183 (2008).

    Article  CAS  Google Scholar 

  28. Nicolas, L. et al. Diastereoselective metal-catalyzed synthesis of C-aryl and C-vinyl glycosides. Angew. Chem. Int. Ed. 51, 11101–11104 (2012).

    Article  CAS  Google Scholar 

  29. Meng, S., Li, X. & Zhu, J. Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron 88, 132140 (2021).

    Article  CAS  Google Scholar 

  30. Meinke, S., Schroven, A. & Thiem, J. Sialic acid C-glycosides with aromatic residues: investigating enzyme binding and inhibition of Trypanosoma cruzi trans-sialidase. Org. Biomol. Chem. 9, 4487–4497 (2011).

    Article  CAS  Google Scholar 

  31. Wu, J., Grant, P. S., Li, X., Noble, A. & Aggarwal, V. K. Catalyst-free deaminative functionalizations of primary amines by photoinduced single-electron transfer. Angew. Chem. Int. Ed. 58, 5697–5701 (2019).

    Article  CAS  Google Scholar 

  32. Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    Article  CAS  Google Scholar 

  33. Wu, J., He, L., Noble, A. & Aggarwal, V. K. Photoinduced deaminative borylation of alkylamines. J. Am. Chem. Soc. 140, 10700–10704 (2018).

    Article  CAS  Google Scholar 

  34. Ji, P. et al. Visible light-mediated, chemo- and stereoselective radical process for the synthesis of C-glycoamino acids. Org. Lett. 21, 3086–3092 (2019).

    Article  CAS  Google Scholar 

  35. Crisenza, G. E. M., Mazzarella, D. & Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor–acceptor complexes. J. Am. Chem. Soc. 142, 5461–5476 (2020).

    Article  CAS  Google Scholar 

  36. Lima, C. G. S., Lima, T. M., Duarte, M., Jurberg, I. D. & Paixão, M. W. Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications. ACS Catal. 6, 1389–1407 (2016).

    Article  CAS  Google Scholar 

  37. Wan, L.-Q. et al. Nonenzymatic stereoselective S-glycosylation of polypeptides and proteins. J. Am. Chem. Soc. 143, 11919–11926 (2021).

    Article  CAS  Google Scholar 

  38. Zhang, C. et al. Halogen-bond-assisted radical activation of glycosyl donors enables mild and stereoconvergent 1,2-cis-glycosylation. Nat. Chem. 14, 686–694 (2022).

    Article  CAS  Google Scholar 

  39. Newcomb, M. in Encyclopedia of Radicals in Chemistry, Biology and Materials (eds Chatgilialoglu, C. & Studer, A.) Ch. 5 (John Wiley & Sons, 2012).

  40. Sengoku, T., Ogawa, D., Iwama, H., Inuzukab, T. & Yoda, H. A heavy-metal-free desulfonylative Giese-type reaction of benzothiazole sulfones under visible-light conditions. Chem. Commun. 57, 9858–9861 (2021).

    Article  CAS  Google Scholar 

  41. Negri, L., Lattanzi, R., Tabacco, F., Scolaro, B. & Rocchi, R. Glycodermorphins: opioid peptides with potent and prolonged analgesic activity and enhanced blood–brain barrier penetration. Br. J. Pharmacol. 124, 1516–1522 (1998).

    Article  CAS  Google Scholar 

  42. Leclerc, E., Pannecoucke, X., Ethève-Quelquejeu, M. & Sollogoub, M. Fluoro-C-glycosides and fluoro-carbasugars, hydrolytically stable and synthetically challenging glycomimetics. Chem. Soc. Rev. 42, 4270–4283 (2013).

    Article  CAS  Google Scholar 

  43. Wang, Q. et al. Iron-catalysed reductive cross-coupling of glycosyl radicals for the stereoselective synthesis of C-glycosides. Nat. Synth. 1, 235–244 (2022).

    Article  Google Scholar 

  44. Prier, C. K. & MacMillan, D. W. Amine α-heteroarylation via photoredox catalysis: a homolytic aromatic substitution pathway. Chem. Sci. 5, 4173–4178 (2014).

    Article  CAS  Google Scholar 

  45. Pachamuthu, K. & Schmidt, R. R. Synthetic routes to thiooligosaccharides and thioglycopeptides. Chem. Rev. 106, 160–187 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Scholarship Block from the Ministry of Education, Singapore (C-143-000-207-532, C-141-000-777-532 and C-141-000-333-532 to M.J.K.). We thank G. K. Tan (National University of Singapore) for the X-ray crystallographic analysis.

Author information

Authors and Affiliations

Authors

Contributions

Q.W., B.C.L., T.J.T., Y.J. and W.H.S. developed the cross-coupling method and conducted the mechanistic studies. M.J.K. directed the investigations. M.J.K. wrote the manuscript with revisions made by the other authors.

Corresponding author

Correspondence to Ming Joo Koh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Christian Pedersen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peter Seavill, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–61, experimental details and X-ray crystallographic data.

Supplementary Data 1

Crystallographic data for compound S-d12 (CCDC-2126409).

Supplementary Data 2

Crystallographic data for compound S-d9 (CCDC-2126410).

Supplementary Data 3

Crystallographic data for compound S-d6 (CCDC-2126412).

Supplementary Data 4

Crystallographic data for compound SI-8 (CCDC-2126413).

Supplementary Data 5

Crystallographic data for compound 18 (CCDC-2130777).

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Lee, B.C., Tan, T.J. et al. Visible light activation enables desulfonylative cross-coupling of glycosyl sulfones. Nat. Synth 1, 967–974 (2022). https://doi.org/10.1038/s44160-022-00162-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00162-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing