Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anion-binding catalysis enables living cationic polymerization

Abstract

Anion-binding interactions in nature have enabled the development of organocatalytic transformations; however, even though ionic species act as intermediates or precursors in many polymerizations, these interactions are underappreciated in polymerization catalysis. Here we introduce a powerful anion-binding catalytic strategy for cationic polymerization. In our approach, selenocyclodiphosph(V)azanes were designed as bench-stable hydrogen-bond donors to reversibly activate dormant covalent bonds (C–X, X=Cl, carboxylate and phosphate), in turn to precisely control the equilibrium between dormant covalent precursors and active cationic species under mild conditions. Experimental and computational analysis of this catalytic system revealed the key role of non-covalent anion-binding interactions between the catalyst and substrates. The living and controlled nature of this strategy, coupled with its capability for recycling catalysts and addressing certain fundamental constraints, such as metal residue and rigorous reaction conditions, delivers a versatile and robust living cationic polymerization methodology for precision polymer synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anion-binding catalysis enables LCP.
Fig. 2: LCP of electron-rich vinyl monomers mediated by anion-binding catalyst 5a.
Fig. 3: NMR spectroscopy titration and low-temperature NMR spectroscopy experiments.
Fig. 4: DFT calculations to simulate the chain initiation and propagation processes.
Fig. 5: Mechanism of anion-binding catalysis for LCP.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available within the article and its Supplementary Information. Crystallographic data for the structures in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition nos. 2125756 (5a·CH3CN) and 2142031 (5a·TEACl). Copies of the data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/.

References

  1. Dutzler, R., Campbell, E. B., Cadene, M., Chait, B. T. & MacKinnon, R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415, 287–294 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Davis, A. P., Sheppard, D. N. & Smith, B. D. Development of synthetic membrane transporters for anions. Chem. Soc. Rev. 36, 348–357 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Hedstrom, L. Serine protease mechanism and specificity. Chem. Rev. 102, 4501–4524 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Z. & Schreiner, P. R. (Thio)urea organocatalysis—what can be learnt from anion recognition? Chem. Soc. Rev. 38, 1187–1198 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Phipps, R. J., Hamilton, G. L. & Toste, F. D. The progression of chiral anions from concepts to applications in asymmetric catalysis. Nat. Chem. 4, 603–614 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article  CAS  Google Scholar 

  7. Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Macheño, O. G. (ed.) Anion-Binding Catalysis (Wiley-VCH GmbH, 2022).

  9. Dove, A. P., Pratt, R. C., Lohmeijer, B. G. G., Waymouth, R. M. & Hedrick, J. L. Thiourea-based bifunctional organocatalysis: supramolecular recognition for living polymerization. J. Am. Chem. Soc. 127, 13798–13799 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, J.-B. & Chen, E. Y. X. From meso-lactide to isotactic polylactide: epimerization by B/N Lewis pairs and kinetic resolution by organic catalysts. J. Am. Chem. Soc. 137, 12506–12509 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Zhang, X., Jones, G. O., Hedrick, J. L. & Waymouth, R. M. Fast and selective ring-opening polymerizations by alkoxides and thioureas. Nat. Chem. 8, 1047–1053 (2016).

    Article  CAS  PubMed  Google Scholar 

  12. Lin, B. & Waymouth, R. M. Urea anions: simple, fast, and selective catalysts for ring-opening polymerizations. J. Am. Chem. Soc. 139, 1645–1652 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Li, M. et al. Synergetic organocatalysis for eliminating epimerization in ring-opening polymerizations enables synthesis of stereoregular isotactic polyester. J. Am. Chem. Soc. 141, 281–289 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Thomas, C. & Bibal, B. Hydrogen-bonding organocatalysts for ring-opening polymerization. Green Chem. 16, 1687–1699 (2014).

    Article  CAS  Google Scholar 

  15. Ottou, W. N., Sardon, H., Mecerreyes, D., Vignolle, J. & Taton, D. Update and challenges in organo-mediated polymerization reactions. Prog. Polym. Sci. 56, 64–115 (2016).

    Article  CAS  Google Scholar 

  16. Li, M. et al. Unimolecular anion-binding catalysts for selective ring-opening polymerization of O-carboxyanhydrides. Angew. Chem. Int. Ed. 60, 6003–6012 (2021).

    Article  CAS  Google Scholar 

  17. Kato, M., Kamigaito, M., Sawamoto, M. & Higashimura, T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris(triphenylphosphine)ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules 28, 1721–1723 (1995).

    Article  CAS  Google Scholar 

  18. Wang, J.-S. & Matyjaszewski, K. Controlled/‘living’ radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 117, 5614–5615 (1995).

    Article  CAS  Google Scholar 

  19. Grubbs, R. H. & Tumas, W. Polymer synthesis and organotransition metal chemistry. Science 243, 907–915 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Miyamoto, M., Sawamoto, M. & Higashimura, T. Living polymerization of isobutyl vinyl ether with hydrogen iodide/iodine initiating system. Macromolecules 17, 265–268 (1984).

    Article  CAS  Google Scholar 

  21. Faust, R. & Kennedy, J. P. Living carbocationic polymerization. Polym. Bull. 15, 317–323 (1986).

    Article  CAS  Google Scholar 

  22. Sawamoto, M. Modern cationic vinyl polymerization. Prog. Polym. Sci. 16, 111–172 (1991).

    Article  CAS  Google Scholar 

  23. Matyjaszewski, K. & Sigwalt, P. Unified approach to living and non-living cationic polymerization of alkenes. Polym. Int. 35, 1–26 (1994).

    Article  CAS  Google Scholar 

  24. Sigwalt, P. & Moreau, M. Carbocationic polymerization: mechanisms and kinetics of propagation reactions. Prog. Polym. Sci. 31, 44–120 (2006).

    Article  CAS  Google Scholar 

  25. Aoshima, S. & Kanaoka, S. A renaissance in living cationic polymerization. Chem. Rev. 109, 5245–5287 (2009).

    Article  CAS  PubMed  Google Scholar 

  26. Michaudel, Q., Kottisch, V. & Fors, B. P. Cationic polymerization: from photoinitiation to photocontrol. Angew. Chem. Int. Ed. 56, 9670–9679 (2017).

    Article  CAS  Google Scholar 

  27. Kamigaito, M. & Sawamoto, M. Synergistic advances in living cationic and radical polymerizations. Macromolecules 53, 6749–6753 (2020).

    Article  CAS  Google Scholar 

  28. Uchiyama, M., Satoh, K. & Kamigaito, M. Cationic RAFT and DT polymerization. Prog. Polym. Sci. 124, 101485 (2022).

    Article  CAS  Google Scholar 

  29. Uchiyama, M., Satoh, K. & Kamigaito, M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew. Chem. Int. Ed. 54, 1924–1928 (2015).

    Article  CAS  Google Scholar 

  30. Teator, A. J. & Leibfarth, F. A. Catalyst-controlled stereoselective cationic polymerization of vinyl ethers. Science 363, 1439–1443 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Kottisch, V. et al. Controlled cationic polymerization: single-component initiation under ambient conditions. J. Am. Chem. Soc. 141, 10605–10609 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kottisch, V. et al. Hydrogen bond donor-catalyzed cationic polymerization of vinyl ethers. Angew. Chem. Int. Ed. 60, 4535–4539 (2021).

    Article  CAS  Google Scholar 

  33. Zhang, X., Jiang, Y., Ma, Q., Hu, S. & Liao, S. Metal-free cationic polymerization of vinyl ethers with strict temporal control by employing an organophotocatalyst. J. Am. Chem. Soc. 143, 6357–6362 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Abel, B. A., Snyder, R. L. & Coates, G. W. Chemically recyclable thermoplastics from reversible-deactivation polymerization of cyclic acetals. Science 373, 783–789 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Lin, S. & Jacobsen, E. N. Thiourea-catalysed ring opening of episulfonium ions with indole derivatives by means of stabilizing non-covalent interactions. Nat. Chem. 4, 817–824 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ford, D. D., Lehnherr, D., Kennedy, C. R. & Jacobsen, E. N. On- and off-cycle catalyst cooperativity in anion-binding catalysis. J. Am. Chem. Soc. 138, 7860–7863 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kennedy, C. R. et al. Mechanism-guided development of a highly active bis-thiourea catalyst for anion-abstraction catalysis. J. Am. Chem. Soc. 138, 13525–13528 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao, C., Sojdak, C. A., Myint, W. & Seidel, D. Reductive etherification via anion-binding catalysis. J. Am. Chem. Soc. 139, 10224–10227 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, L., Berry, S. N., Wu, X., Howe, E. N. W. & Gale, P. A. Advances in anion receptor chemistry. Chem 6, 61–141 (2020).

    Article  CAS  Google Scholar 

  40. Busschaert, N., Caltagirone, C., Van Rossom, W. & Gale, P. A. Applications of supramolecular anion recognition. Chem. Rev. 115, 8038–8155 (2015).

    Article  CAS  PubMed  Google Scholar 

  41. Plajer, A. J. et al. Tailoring the binding properties of phosphazane anion receptors and transporters. J. Am. Chem. Soc. 141, 8807–8815 (2019).

    Article  CAS  PubMed  Google Scholar 

  42. Gheewala, C. D., Collins, B. E. & Lambert, T. H. An aromatic ion platform for enantioselective Brønsted acid catalysis. Science 351, 961–965 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. Kütt, A. et al. Strengths of acids in acetonitrile. Eur. J. Org. Chem. 2021, 1407–1419 (2021).

    Article  Google Scholar 

  44. Sawamoto, M., Kamigaito, M. & Higashimura, T. Living cationic polymerization of isobutyl vinyl ether by the diphenyl phosphate/zinc iodide initiating system. Polym. Bull. 20, 407–412 (1988).

    Article  CAS  Google Scholar 

  45. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Kamigaito, M., Maeda, Y., Sawamoto, M. & Higashimura, T. Living cationic polymerization of isobutyl vinyl ether by hydrogen chloride/Lewis acid initiating systems in the presence of salts: in-situ direct NMR analysis of the growing species. Macromolecules 26, 1643–1649 (1993).

    Article  CAS  Google Scholar 

  47. Ford, D. D., Lehnherr, D., Kennedy, C. R. & Jacobsen, E. N. Anion-abstraction catalysis: the cooperative mechanism of α-chloroether activation by dual hydrogen-bond donors. ACS Catal. 6, 4616–4620 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takagi, K., Yamauchi, K. & Murakata, H. Halogen-bonding-mediated and controlled cationic polymerization of isobutyl vinyl ether: expanding the catalytic scope of 2-iodoimidazolium salts. Chem. Eur. J. 23, 9495–9500 (2017).

    Article  CAS  PubMed  Google Scholar 

  50. Haraguchi, R., Nishikawa, T., Kanazawa, A. & Aoshima, S. Metal-free living cationic polymerization using diaryliodonium salts as organic Lewis acid catalysts. Macromolecules 53, 4185–4192 (2020).

    Article  CAS  Google Scholar 

  51. Takagi, K., Murakata, H., Yamauchi, K. & Hashimoto, K. Cationic polymerization of vinyl monomers using halogen bonding organocatalysts with varied activity. Polym. Chem. 11, 6739–6744 (2020).

    Article  CAS  Google Scholar 

  52. Takagi, K., Sakakibara, N., Hasegawa, T. & Hayashi, S. Controlled/living cationic polymerization of p-methoxystyrene using tellurium-based chalcogen bonding catalyst—discovery of a new water-tolerant Lewis acid catalyst. Macromolecules 55, 3671–3680 (2022).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant U21A2089, Y.T., and grant 22001243, M.L.) and the Jilin Science and Technology Bureau (Grant 20210402066GH, M.L.). We thank X. Zhang for helpful discussions with the theoretical calculations. We thank the Molecular Scale Lab at Shenzhen University for the MALDI–TOF MS characterization.

Author information

Authors and Affiliations

Authors

Contributions

M.L. and Y.T. developed the concept, and co-wrote the manuscript. M.L. and Y.T. designed the experiments, and analysed the results. M.L., Z.Z., Y.Y. and W.L. performed the experiments. Z.L. performed the MALDI–TOF MS experiments. M.L. performed the DFT calculations. Y.T. and X.W. directed the project.

Corresponding author

Correspondence to Youhua Tao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Frank Leibfarth and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary handling editor: Alison Stoddart, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–49, Tables 1–4, materials, experimental procedures, product characterization, computational methodology and supplementary discussion.

Supplementary Data 1

Crystallographic data for compound 5a, CCDC 2125756.

Supplementary Data 2

Crystallographic data for compound 5a•TEACl, CCDC 2142031.

Supplementary Data 3

DFT computational data in .log files for all the transition states and intermediates.

Source data

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Source Data Fig. 4

Statistical Source Data.

Source Data Fig. 5

Statistical Source Data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, Z., Yan, Y. et al. Anion-binding catalysis enables living cationic polymerization. Nat. Synth 1, 815–823 (2022). https://doi.org/10.1038/s44160-022-00142-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00142-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing