Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enantioselective synthesis of P-stereogenic allenylphosphines through Ni-catalysed propargylic substitution

Abstract

Typical methods for the synthesis of P-stereogenic allenylphosphine derivatives depend on chirality transfer from P-stereogenic substrates and require multiple synthetic steps. Now we report a Ni-catalysed enantioselective propargylic substitution reaction for the synthesis of P-stereogenic allenylphosphine derivatives from propargylic carbonates and secondary phosphines. Using in situ generated secondary phosphines, after a reduction of the corresponding phosphine oxides, a wide range of allenylphosphine derivatives with a P-stereogenic centre were synthesized with a high enantiocontrol (up to 97% e.e.). The method was also applied to the enantioconvergent synthesis of the P,axial-stereogenic 1,3-disubstituted allenylphosphines, using secondary propargylic carbonates as substrates with excellent enantio- and diastereocontrol (up to 97% e.e. and 14:1 d.r.) without the need for racemization or symmetrization of the secondary propargylic carbonates. The chiral phosphine products were readily incorporated into transition metal complexes with retention of stereopurity. Experimental and computational mechanistic studies suggest that the process proceeds through an enantioconvergent reaction mechanism, which gives enantioenriched phosphine products from a racemic mixture of secondary propargylic carbonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Functionalized P-stereogenic phosphines and Ni-catalysed propargylic substitution reactions.
Fig. 2: Derivatization of allenylphosphine and allenylphosphine oxide.
Fig. 3: Experimental mechanistic studies of Ni-catalysed propargylic substitution reactions with secondary phosphines.
Fig. 4: Computation calculations for the Ni-catalysed propargylic substitution reaction with secondary phosphines.
Fig. 5: Proposed mechanism for the Ni-catalysed propargylic substitution with secondary phosphines.

Similar content being viewed by others

Data availability

All data are available in the manuscript or the Supplementary materials. Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2079669 (3av), 2079668 (3a-Ir) and 2071745 (Ni-PH). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Ma, S. Some typical advances in the synthetic applications of allenes. Chem. Rev. 105, 2829–2872 (2005).

    Article  PubMed  Google Scholar 

  2. Liu, L., Ward, R. M. & Schomaker, J. M. Mechanistic aspects and synthetic applications of radical additions to allenes. Chem. Rev. 119, 12422–12490 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swamy, K. C. K., Anitha, M., Debnath, S. & Shankar, M. Reactivity of allenylphosphonates/allenylphosphine oxides—some new addition/cycloaddition and cyclization pathways. Pure Appl. Chem. 91, 773–784 (2019).

    Article  CAS  Google Scholar 

  4. Nicolaou, K. C., Maligres, P., Shin, J., De Leon, E. & Rideout, D. DNA-cleavage and antitumor activity of designed molecules with conjugated phosphine oxide–allene–ene–yne functionalities. J. Am. Chem. Soc. 112, 7825–7826 (1990).

    Article  CAS  Google Scholar 

  5. Gangadhararao, G., Kotikalapudi, R., Nagarjuna Reddy, M. & Swamy, K. C. K. Allenylphosphine oxides as simple scaffolds for phosphinoylindoles and phosphinoylisocoumarins. Beilstein J. Org. Chem. 10, 996–1005 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nishimura, T., Hirabayashi, S., Yasuhara, Y. & Hayashi, T. Rhodium-catalyzed asymmetric hydroarylation of diphenylphosphinylallenes with arylboronic acids. J. Am. Chem. Soc. 128, 2556–2557 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Yu, F., Lian, X. & Ma, S. Pd-catalyzed regio- and stereoselective cyclization−Heck reaction of monoesters of 1,2-allenyl phosphonic acids with alkenes. Org. Lett. 9, 1703–1706 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Wei, K., Luo, K., Liu, F., Wu, L. & Wu, L.-Z. Visible-light-driven selective alkenyl C–P bond cleavage of allenylphosphine oxides. Org. Lett. 21, 1994–1998 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Mao, M., Zhang, L., Chen, Y.-Z., Zhu, J. & Wu, L. Palladium-catalyzed coupling of allenylphosphine oxides with N-tosylhydrazones toward phosphinyl [3]dendralenes. ACS Catal. 7, 181–185 (2017).

    Article  CAS  Google Scholar 

  10. Ma, S., Guo, H. & Yu, F. Palladium(0)-catalyzed highly regio- and stereoselective addition of organoboronic acids with 1,2-allenylphosphonates forming tri- or tetrasubstituted 1(E)-alkenylphosphonates. J. Org. Chem. 71, 6634–6636 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Kumar, N. N. B., Reddy, M. N. & Swamy, K. C. K. Reactivity of allenylphosphonates toward salicylaldehydes and activated phenols: facile synthesis of chromenes and substituted butadienes. J. Org. Chem. 74, 5395–5404 (2009).

    Article  CAS  PubMed  Google Scholar 

  12. Kawamoto, T., Hirabayashi, S., Guo, X.-X., Nishimura, T. & Hayashi, T. Rhodium-catalyzed asymmetric hydroalkoxylation and hydrosulfenylation of diphenylphosphinylallenes. Chem. Commun. 2009, 3528–3530 (2009).

    Article  CAS  Google Scholar 

  13. Gu, Y., Hama, T. & Hammond, G. B. Diastereoselective synthesis of cyclic α-fluoromethylidenephosphonates using α-fluoroallenephosphonate as dienophile. Chem. Commun. 2000, 395–396 (2000).

    Article  Google Scholar 

  14. Chen, Y.-Z., Zhang, L., Lu, A.-M., Yang, F. & Wu, L. α-Allenyl ethers as starting materials for palladium catalyzed Suzuki–Miyaura couplings of allenylphosphine oxides with arylboronic acids. J. Org. Chem. 80, 673–680 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Deng, H. et al. Palladium-catalyzed stereospecific C–P coupling toward diverse PN-heterocycles. Chem 8, 1–11 (2022).

    Article  CAS  Google Scholar 

  16. Hu, G. et al. Copper-catalyzed direct coupling of unprotected propargylic alcohols with P(O)H compounds: access to allenylphosphoryl compounds under ligand- and base-free conditions. Org. Lett. 18, 6066–6069 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Yang, C. H. et al. Direct access to allenylphosphine oxides via a metal free coupling of propargylic substrates with P(O)H compounds. Org. Lett. 21, 9438–9441 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Qiu, M. R. et al. Stereoselective preparation of P,axial-stereogenic allenyl bisphosphine oxides via chirality-transfer. Org. Biomol. Chem. 18, 3017–3021 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Kalek, M. & Stawinski, J. Novel, stereoselective and stereospecific synthesis of allenylphosphonates and related compounds via palladium-catalyzed propargylic substitution. Adv. Synth. Catal. 353, 1741–1755 (2011).

    Article  CAS  Google Scholar 

  20. Kalek, M., Johansson, T., Jezowska, M. & Stawinski, J. Palladium-catalyzed propargylic substitution with phosphorus nucleophiles: efficient, stereoselective synthesis of allenylphosphonates and related compounds. Org. Lett. 12, 4702–4704 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Guo, H., Fan, Y. C., Sun, Z., Wu, Y. & Kwon, O. Phosphine organocatalysis. Chem. Rev. 118, 10049–10293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fu, W. & Tang, W. Chiral monophosphorus ligands for asymmetric catalytic reactions. ACS Catal. 6, 4814–4858 (2016).

    Article  CAS  Google Scholar 

  23. Ye, X., Peng, L., Bao, X., Tan, C.-H. & Wang, H. Recent developments in highly efficient construction of P-stereogenic centers. Green Synth. Catal. 2, 6–18 (2021).

    Article  Google Scholar 

  24. Xu, G., Senanayake, C. H. & Tang, W. P-chiral phosphorus ligands based on a 2,3-dihydrobenzo[d][1,3]oxaphosphole motif for asymmetric catalysis. Acc. Chem. Res. 52, 1101–1112 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, W. & Zhang, X. New chiral phosphorus ligands for enantioselective hydrogenation. Chem. Rev. 103, 3029–3070 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Imamoto, T. Searching for practically useful P-chirogenic phosphine ligands. Chem. Rec. 16, 2659–2673 (2016).

    Article  CAS  Google Scholar 

  27. Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Anderson, B. J., Glueck, D. S., Dipasquale, A. G. & Rheingold, A. L. Substrate and catalyst screening in platinum-catalyzed asymmetric alkylation of bis(secondary) phosphines. Synthesis of an enantiomerically pure C2-symmetric diphosphine. Organometallics 27, 4992–5001 (2008).

    Article  CAS  Google Scholar 

  29. Scriban, C. & Glueck, D. S. Platinum-catalyzed asymmetric alkylation of secondary phosphines: enantioselective synthesis of P-stereogenic phosphines. J. Am. Chem. Soc. 128, 2788–2789 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Chapp, T. W., Glueck, D. S., Golen, J. A., Moore, C. E. & Rheingold, A. L. Platinum-catalyzed asymmetric alkylation of bis(isitylphosphino)ethane: stereoselectivity reversal in successive formation of two P−C bonds. Organometallics 29, 378–388 (2010).

    Article  CAS  Google Scholar 

  31. Scriban, C., Glueck, D. S., Golen, J. A. & Rheingold, A. L. Platinum-catalyzed asymmetric alkylation of a secondary phosphine: mechanism and origin of enantioselectivity. Organometallics 26, 1788–1800 (2007).

    Article  CAS  Google Scholar 

  32. Li, C., Li, W., Xu, S. & Duan, W. Pd-catalyzed asymmetric alkylation of methylphenylphosphine with alkyl halides for the synthesis of P-stereogenic compounds. Chin. J. Org. Chem. 33, 799 (2013).

    Article  CAS  Google Scholar 

  33. Chapp, T. W., Schoenfeld, A. J. & Glueck, D. S. Effects of linker length on the rate and selectivity of platinum-catalyzed asymmetric alkylation of the bis(isitylphosphino)alkanes IsHP(CH2)nPHIs (Is = 2,4,6-(i-Pr)3C6H2, n = 1−5). Organometallics 29, 2465–2473 (2010).

    Article  CAS  Google Scholar 

  34. Anderson, B. J., Reynolds, S. C., Guino-O, M. A., Xu, Z. & Glueck, D. S. Effect of linker length on selectivity and cooperative reactivity in platinum-catalyzed asymmetric alkylation of bis(phenylphosphino)alkanes. ACS Catal. 6, 8106–8114 (2016).

    Article  CAS  Google Scholar 

  35. Chan, V. S., Chiu, M., Bergman, R. G. & Toste, F. D. Development of ruthenium catalysts for the enantioselective synthesis of P-stereogenic phosphines via nucleophilic phosphido intermediates. J. Am. Chem. Soc. 131, 6021–6032 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, S., Xiao, J.-Z., Li, Y.-B., Shi, C.-Y. & Yin, L. Copper(I)-catalyzed asymmetric alkylation of unsymmetrical secondary phosphines. J. Am. Chem. Soc. 143, 9912–9921 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Gibbons, S. K., Xu, Z., Hughes, R. P., Glueck, D. S. & Rheingold, A. L. Chiral bis(phospholane) PCP pincer complexes: synthesis, structure, and nickel-catalyzed asymmetric phosphine alkylation. Organometallics 37, 2159–2166 (2018).

    Article  CAS  Google Scholar 

  38. Chan, V. S., Stewart, I. C., Bergman, R. G. & Toste, F. D. Asymmetric catalytic synthesis of P-stereogenic phosphines via a nucleophilic ruthenium phosphido complex. J. Am. Chem. Soc. 128, 2786–2787 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Korff, C. & Helmchen, G. Preparation of chiral triarylphosphines by Pd-catalysed asymmetric P–C cross-coupling. Chem. Commun. 2004, 530–531 (2004).

    Article  Google Scholar 

  40. Anderson, B. J. et al. Platinum-catalyzed enantioselective tandem alkylation/arylation of primary phosphines. Asymmetric synthesis of P-stereogenic 1-phosphaacenaphthenes. Org. Lett. 10, 4425–4428 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Blank, N. F. et al. Palladium-catalyzed asymmetric phosphination. Scope, mechanism, and origin of enantioselectivity. J. Am. Chem. Soc. 129, 6847–6858 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Moncarz, J. R., Laritcheva, N. F. & Glueck, D. S. Palladium-catalyzed asymmetric phosphination: enantioselective synthesis of a P-chirogenic phosphine. J. Am. Chem. Soc. 124, 13356–13357 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Brunker, T. J., Anderson, B. J., Blank, N. F., Glueck, D. S. & Rheingold, A. L. Enantioselective synthesis of P-stereogenic benzophospholanes via palladium-catalyzed intramolecular cyclization. Org. Lett. 9, 1109–1112 (2007).

    Article  CAS  PubMed  Google Scholar 

  44. Yue, W. J., Xiao, J. Z., Zhang, S. & Yin, L. Rapid synthesis of chiral 1,2‐bisphosphine derivatives through copper(I)‐catalyzed asymmetric conjugate hydrophosphination. Angew. Chem. Int. Ed. 59, 7057–7062 (2020).

    Article  CAS  Google Scholar 

  45. Scriban, C., Kovacik, I. & Glueck, D. S. A protic additive suppresses formation of byproducts in platinum-catalyzed hydrophosphination of activated olefins. Evidence for P−C and C−C bond formation by Michael addition. Organometallics 24, 4871–4874 (2005).

    Article  CAS  Google Scholar 

  46. Song, Y.-C., Dai, G.-F., Xiao, F. & Duan, W.-L. Palladium-catalyzed enantioselective hydrophosphination of enones for the synthesis of chiral P,N-compounds. Tetrahedron Lett. 57, 2990–2993 (2016).

    Article  CAS  Google Scholar 

  47. Huang, Y., Pullarkat, S. A., Li, Y. & Leung, P.-H. Palladacycle-catalyzed asymmetric hydrophosphination of enones for synthesis of C*- and P*-chiral tertiary phosphines. Inorg. Chem. 51, 2533–2540 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Li, Y.-B., Tian, H. & Yin, L. Copper(I)-catalyzed asymmetric 1,4-conjugate hydrophosphination of α,β-unsaturated amides. J. Am. Chem. Soc. 142, 20098–20106 (2020).

    Article  CAS  PubMed  Google Scholar 

  49. Teo, R. H. X., Chen, H. J., Li, Y., Pullarkat, S. A. & Leung, P. H. Asymmetric catalytic 1,2-dihydrophosphination of secondary 1,2-diphosphines—direct access to free P*‐ and P*,C*‐diphosphines. Adv. Synth. Catal. 362, 2373–2378 (2020).

    Article  CAS  Google Scholar 

  50. Huang, Y., Li, Y., Leung, P.-H. & Hayashi, T. Asymmetric synthesis of P-stereogenic diarylphosphinites by palladium-catalyzed enantioselective addition of diarylphosphines to benzoquinones. J. Am. Chem. Soc. 136, 4865–4868 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Liu, X.-T. et al. Ni-catalyzed asymmetric hydrophosphination of unactivated alkynes. J. Am. Chem. Soc. 143, 11309–11316 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Zhang, Y., He, H., Wang, Q. & Cai, Q. Asymmetric synthesis of chiral P-stereogenic triaryl phosphine oxides via Pd-catalyzed kinetic arylation of diaryl phosphine oxides. Tetrahedron Lett. 57, 5308–5311 (2016).

    Article  CAS  Google Scholar 

  53. Qiu, H., Dai, Q., He, J., Li, W. & Zhang, J. Access to P-chiral sec- and tert-phosphine oxides enabled by Le-Phos-catalyzed asymmetric kinetic resolution. Chem. Sci. 11, 9983–9988 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, X.-T., Zhang, Y.-Q., Han, X.-Y., Sun, S.-P. & Zhang, Q.-W. Ni-catalyzed asymmetric allylation of secondary phosphine oxides. J. Am. Chem. Soc. 141, 16584–16589 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. Dai, Q., Liu, L., Qian, Y., Li, W. & Zhang, J. Construction of P-chiral alkenylphosphine oxides through highly chemo-, regio-, and enantioselective hydrophosphinylation of alkynes. Angew. Chem. Int. Ed. 59, 20645–20650 (2020).

    Article  CAS  Google Scholar 

  56. Dai, Q., Li, W., Li, Z. & Zhang, J. P-chiral phosphines enabled by palladium/Xiao-Phos-catalyzed asymmetric P–C cross-coupling of secondary phosphine oxides and aryl bromides. J. Am. Chem. Soc. 141, 20556–20564 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Beaud, R., Phipps, R. J. & Gaunt, M. J. Enantioselective Cu-catalyzed arylation of secondary phosphine oxides with diaryliodonium salts toward the synthesis of P-chiral phosphines. J. Am. Chem. Soc. 138, 13183–13186 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Q., Liu, X.-T., Wu, Y. & Zhang, Q.-W. Ni-catalyzed enantioselective allylic alkylation of H-phosphinates. Org. Lett. 23, 8683–8687 (2021).

    Article  CAS  PubMed  Google Scholar 

  59. Dai, Q., Liu, L. & Zhang, J. Palladium/Xiao-Phos-catalyzed kinetic resolution of sec-phosphine oxides by P-benzylation. Angew. Chem. Int. Ed. 60, 27247–27252 (2021).

    Article  CAS  Google Scholar 

  60. Wu, Z.-H. et al. Cobalt-catalysed asymmetric addition and alkylation of secondary phosphine oxides for the synthesis of P-stereogenic compounds. Angew. Chem. Int. Ed. 60, 27241–27246 (2021).

    Article  CAS  Google Scholar 

  61. Glueck, D. S. Applications of 31P NMR spectroscopy in development of M(Duphos)-catalyzed asymmetric synthesis of P-stereogenic phosphines (M = Pt or Pd). Coord. Chem. Rev. 252, 2171–2179 (2008).

    Article  CAS  Google Scholar 

  62. Glueck, D. S. Catalytic asymmetric synthesis of P-stereogenic phosphines: beyond precious metals. Synlett 32, 875–884 (2020).

    Article  CAS  Google Scholar 

  63. Gibbons, S. K. et al. Diastereoselective coordination of P-stereogenic secondary phosphines in copper(I) chiral bis(phosphine) complexes: structure, dynamics, and generation of phosphido complexes. Inorg. Chem. 58, 8854–8865 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Scriban, C., Glueck, D. S., Dipasquale, A. G. & Rheingold, A. L. Chiral platinum Duphos terminal phosphido complexes: synthesis, structure, phosphido transfer, and ligand behavior. Organometallics 25, 5435–5448 (2006).

    Article  CAS  Google Scholar 

  65. Paris, S. I., Petersen, J. L., Hey-Hawkins, E. & Jensen, M. P. Spectroscopic characterization of primary and secondary phosphine ligation on ruthenium(II) complexes. Inorg. Chem. 45, 5561–5567 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Nell, B. P. & Tyler, D. R. Synthesis, reactivity, and coordination chemistry of secondary phosphines. Coord. Chem. Rev. 279, 23–42 (2014).

    Article  CAS  Google Scholar 

  67. Chang, X., Zhang, J., Peng, L. & Guo, C. Collective synthesis of acetylenic pharmaceuticals via enantioselective nickel/Lewis acid-catalyzed propargylic alkylation. Nat. Commun. 12, 299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Peng, L., He, Z., Xu, X. & Guo, C. Cooperative Ni/Cu-catalyzed asymmetric propargylic alkylation of aldimine esters. Angew. Chem. Int. Ed. 59, 14270–14274 (2020).

    Article  CAS  Google Scholar 

  69. Xu, X., Peng, L., Chang, X. & Guo, C. Ni/chiral sodium carboxylate dual catalyzed asymmetric O-propargylation. J. Am. Chem. Soc. 143, 21048–21055 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Cherney, A. H., Kadunce, N. T. & Reisman, S. E. Enantioselective and enantiospecific transition-metal-catalyzed cross-coupling reactions of organometallic reagents to construct C–C bonds. Chem. Rev. 115, 9587–9652 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Watanabe, K. et al. Nickel-catalyzed asymmetric propargylic amination of propargylic carbonates bearing an internal alkyne group. Org. Lett. 20, 5448–5451 (2018).

    Article  CAS  PubMed  Google Scholar 

  72. Tsuji, H., Shimizu, Y., Miyazaki, Y. & Kawatsura, M. Nickel-catalyzed asymmetric propargylic amination of propargylic carbonates with aniline derivatives. Chem. Lett. 50, 1002–1005 (2021).

    Article  CAS  Google Scholar 

  73. Smith, S. W. & Fu, G. C. Nickel-catalyzed asymmetric cross-couplings of racemic propargylic halides with arylzinc reagents. J. Am. Chem. Soc. 130, 12645–12647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent catalysis from 2005 to 2015: transition-metal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations. Chem. Rev. 117, 4528–4561 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Shao, X. B., Zhang, Z., Li, Q. H. & Zhao, Z. G. Synthesis of multi-substituted allenes from organoalane reagents and propargyl esters by using a nickel catalyst. Org. Biomol. Chem. 16, 4797–4806 (2018).

    Article  CAS  PubMed  Google Scholar 

  76. Li, Q. & Gau, H. Synthesis of allenes via nickel-catalyzed cross-coupling reaction of propargylic bromides with Grignard reagents. Synlett 23, 747–750 (2012).

    Article  CAS  Google Scholar 

  77. Li, Q.-H., Liao, J.-W., Huang, Y.-L., Chiang, R.-T. & Gau, H.-M. Nickel-catalyzed substitution reactions of propargyl halides with organotitanium reagents. Org. Biomol. Chem. 12, 7634–7642 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Xu, Y., Yi, H. & Oestreich, M. Enantioconvergent and regioselective synthesis of allenylsilanes by nickel-catalyzed C(sp2)–C(sp3) cross-coupling starting from racemic α-silylated propargylic bromides. Organometallics 40, 2194–2197 (2021).

    Article  CAS  Google Scholar 

  79. Huo, H., Gorsline, B. J. & Fu, G. C. Catalyst-controlled doubly enantioconvergent coupling of racemic alkyl nucleophiles and electrophiles. Science 367, 559–564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ito, H., Kunii, S. & Sawamura, M. Direct enantio-convergent transformation of racemic substrates without racemization or symmetrization. Nat. Chem. 2, 972–976 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Imamoto, T. et al. Synthesis and reactions of optically active phosphine-boranes. Heteroatom Chem. 3, 563–575 (1992).

    Article  CAS  Google Scholar 

  82. Cruchter, T. & Larionov, V. A. Asymmetric catalysis with octahedral stereogenic-at-metal complexes featuring chiral ligands. Coord. Chem. Rev. 376, 95–113 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the National Key R&D Program of China (2018YFA0702001), NSFC (22071224, 21901235), USTC (KY2060000143) and USTC Research Funds of the Double First-Class Initiative (YD2060002010). The numerical calculations in this paper weere done on the supercomputing system in the Supercomputing Center of University of Science and Technology of China. Y. Shao of Lanzhou University is acknowledged for refinement of the XRD data of compounds 3a-Ir and Ni-PH.

Author information

Authors and Affiliations

Authors

Contributions

W.-H.W. carried out the experimental and data-analysis work. Y.W. carried out the computational studies. H.-T.W., P.-J.Q. and W.-N.L. performed the synthesis of the substrates. Q.-W.Z. designed the reaction, directed the project and wrote the paper with feedback from all the authors.

Corresponding author

Correspondence to Qing-Wei Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Figs, 1–8, detailed experimental data and copies of NMR spectrum and HPLC chromatography.

Supplementary Data 1

X-ray crystallographic data for compound 3a-Ir. CCDC 2079668.

Supplementary Data 2

X-ray crystallographic data for compound 3av. CCDC 2079669.

Supplementary Data 3

X-ray crystallographic data for compound Ni-PH. CCDC 2071745.

Supplementary Data 4

.xyz file of computed structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WH., Wu, Y., Wang, HT. et al. Enantioselective synthesis of P-stereogenic allenylphosphines through Ni-catalysed propargylic substitution. Nat. Synth 1, 738–747 (2022). https://doi.org/10.1038/s44160-022-00123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00123-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing