Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atroposelective isoquinolinone synthesis through cobalt-catalysed C–H activation and annulation

Abstract

Enantioselective C–H functionalization for the synthesis of chiral molecules is a challenge in organic synthesis. Although there are several methods for atroposelective C–H functionalization to form C–N axially chiral anilides based on preformed aromatic ring systems, methods that construct N-heterocycles are relatively under-explored. Here we report a cobalt-catalysed enantioselective C–H activation and annulation process for the atroposelective synthesis of isoquinolines. The reaction proceeds under mild conditions using Co(OAc)2·4H2O with a chiral salicyl-oxazoline (Salox) ligand and O2 as an oxidant. The reaction tolerates a broad range of benzamides and internal and terminal alkynes, producing a range of C–N axially chiral isoquinolinones in excellent yield and enantioselectivity (up to 98% yield and 98% e.e.). Mechanistic studies infer that the process proceeds through a CoIII/CoI catalytic cycle, with the C–N reductive elimination step being stereo-determining. The isoquinolinone products show atropostability and thermal resistance and are suitable ligands for the Pd-catalysed enantioselective C–H functionalization of indole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Background and project synopsis.
Fig. 2: Study on product stability.
Fig. 3: Synthetic applications.
Fig. 4: Control experiments and computational mechanistic studies.

Similar content being viewed by others

Data availability

All data relating to the experimental procedures, optimization studies and characterization of the new compounds are in the Supplementary Information. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 2121762 (3aa), CCDC 2129412 (3ar), CCDC 2165266 (3av-major), CCDC 2165270 (3av-minor) and CCDC 2165271 (9). Copies of the CCDC data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. Jiang, H.-L. et al. New isocoumarins and alkaloid from Chinese insect medicine, Eupolyphaga sinensis Walker. Fitoterapia 83, 1275–1280 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Glunz, P. W. Recent encounters with atropisomerism in drug discovery. Bioorg. Med. Chem. Lett. 28, 53–60 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Mino, T. et al. Synthesis and application of P,olefin type axially chiral ligands with sec-alkyl groups. Org. Biomol. Chem. 17, 1455–1465 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Dial, B. E., Pellechia, P. J., Smith, M. D. & Shimizu, K. D. Proton grease: an acid accelerated molecular rotor. J. Am. Chem. Soc. 134, 3675–3678 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Bringmann, G. et al. Atroposelective synthesis of axially chiral biaryl compounds. Angew. Chem. Int. Ed. 44, 5384–5427 (2005).

    Article  CAS  Google Scholar 

  6. Wencel-Delord, J., Panossian, A., Leroux, F. R. & Colobert, F. Recent advances and new concepts for the synthesis of axially stereoenriched biaryls. Chem. Soc. Rev. 44, 3418–3430 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Y.-B. & Tan, B. Construction of axially chiral compounds via asymmetric organocatalysis. Acc. Chem. Res. 51, 534–547 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Metrano, A. J. & Miller, S. J. Peptide-based catalysts reach the outer sphere through remote desymmetrization and atroposelectivity. Acc. Chem. Res. 52, 199–215 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Liu, Z.-S. et al. Construction of axial chirality via palladium/chiral norbornene cooperative catalysis. Nat. Catal. 3, 727–733 (2020).

    Article  CAS  Google Scholar 

  10. Liu, C.-X., Zhang, W.-W., Yin, S.-Y., Gu, Q. & You, S.-L. Synthesis of atropisomers by transition-metal-catalyzed asymmetric C-H functionalization reactions. J. Am. Chem. Soc. 143, 14025–14040 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Kumarasamy, E., Raghunathan, R., Sibi, M. P. & Sivaguru, J. Nonbiaryl and heterobiaryl atropisomers: molecular templates with promise for atropselective chemical transformations. Chem. Rev. 115, 11239–11300 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Li, Z. & Yu, S. Asymmetric synthesis of atropisomeric compounds with C-N chiral axis. Sci. Sin. Chim. 50, 509–525 (2020).

    Article  Google Scholar 

  13. Kitagawa, O. Chiral Pd-catalyzed enantioselective syntheses of various N-C axially chiral compounds and their synthetic applications. Acc. Chem. Res. 54, 719–730 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Kitagawa, O., Kohriyama, M. & Taguchi, T. Catalytic asymmetric synthesis of optically active atropisomeric anilides through enantioselective N-allylation with chiral Pd-tol-BINAP catalyst. J. Org. Chem. 67, 8682–8684 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Terauchi, J. & Curran, D. P. N-allylation of anilides with chiral palladium catalysts: the first catalytic asymmetric synthesis of axially chiral anilides. Tetrahedron Asymm. 14, 587–592 (2003).

    Article  CAS  Google Scholar 

  16. Kitagawa, O., Takahashi, M., Yoshikawa, M. & Taguchi, T. Efficient synthesis of optically active atropisomeric anilides through catalytic asymmetric N-arylation reaction. J. Am. Chem. Soc. 127, 3676–3677 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Li, S.-L. et al. Atroposelective catalytic asymmetric allylic alkylation reaction for axially chiral anilides with achiral Morita-Baylis-Hillman carbonates. J. Am. Chem. Soc. 140, 12836–12843 (2018).

    Article  CAS  PubMed  Google Scholar 

  18. Lu, S. et al. Practical access to axially chiral sulfonamides and biaryl amino phenols via organocatalytic atroposelective N-alkylation. Nat. Commun. 10, 3061 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fan, X., Zhang, X., Li, C. & Gu, Z. Enantioselective atropisomeric anilides synthesis via Cu-catalyzed intramolecular adjacent C−N coupling. ACS Catal. 9, 2286–2291 (2019).

    Article  CAS  Google Scholar 

  20. Liu, Z.-S. et al. An axial-to-axial chirality transfer strategy for atroposelective construction of C–N axial chirality. Chem 7, 1917–1932 (2021).

    Article  CAS  Google Scholar 

  21. Brandes, S., Bella, M., Kjaersgaard, A. & Jørgensen, K. A. Chirally aminated 2-naphthols—organocatalytic synthesis of nonbiaryl atropisomers by asymmetric Friedel-Crafts amination. Angew. Chem. Int. Ed. 45, 1147–1151 (2006).

    Article  CAS  Google Scholar 

  22. Di Iorio, N. et al. Remote control of axial chirality: aminocatalytic desymmetrization of N-arylmaleimides via vinylogous Michael addition. J. Am. Chem. Soc. 136, 10250–10253 (2014).

    Article  PubMed  CAS  Google Scholar 

  23. Tanaka, K., Takeishi, K. & Noguchi, K. Enantioselective synthesis of axially chiral anilides through rhodium-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes with trimethylsilylynamides. J. Am. Chem. Soc. 128, 4586–4587 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, L., Zhong, J. & Lin, X. Atroposelective phosphoric acid catalyzed three-component cascade reaction: enantioselective synthesis of axially chiral N-arylindoles. Angew. Chem. Int. Ed. 58, 15824–15828 (2019).

    Article  CAS  Google Scholar 

  25. Zhang, L., Zhang, J., Ma, J., Cheng, D.-J. & Tan, B. Highly atroposelective synthesis of arylpyrroles by catalytic asymmetric Paal-Knorr reaction. J. Am. Chem. Soc. 139, 1714–1717 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, Y.-B., Zheng, S.-C., Hu, Y.-M. & Tan, B. Brønsted acid-catalysed enantioselective construction of axially chiral arylquinazolinones. Nat. Commun. 8, 15489 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Yao, Q.-J. et al. Enantioselective synthesis of atropisomeric anilides via Pd(II)-catalyzed asymmetric C-H olefination. J. Am. Chem. Soc. 142, 18266–18276 (2020).

    Article  CAS  PubMed  Google Scholar 

  28. Li, H. et al. Enantioselective synthesis of C-N axially chiral N-aryloxindoles by asymmetric rhodium-catalyzed dual C-H activation. Angew. Chem. Int. Ed. 58, 6732–6736 (2019).

    Article  CAS  Google Scholar 

  29. Ye, C.-X. et al. Atroposelective synthesis of axially chiral N-arylpyrroles by chiral-at-rhodium catalysis. Angew. Chem. Int. Ed. 59, 13552–13556 (2020).

    Article  CAS  Google Scholar 

  30. Dhawa, U. et al. Enantioselective palladaelectro-catalyzed C-H olefinations and allylations for N-C axial chirality. Chem. Sci. 12, 14182–14188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, L. et al. Rhodium-catalyzed atroposelective construction of indoles via C-H bond activation. Angew. Chem. Int. Ed. 60, 8391–8395 (2021).

    Article  CAS  Google Scholar 

  32. Woźniak, Ł. & Cramer, N. Enantioselective C-H bond functionalizations by 3d transition-metal catalysts. Trends Chem. 1, 471–484 (2019).

    Article  CAS  Google Scholar 

  33. Loup, J., Dhawa, U., Pesciaioli, F., WencelDelord, J. & Ackermann, L. Enantioselective C-H activation with earth-abundant 3d transition metals. Angew. Chem. Int. Ed. 58, 12803–12818 (2019).

    Article  CAS  Google Scholar 

  34. Yoshino, T. & Matsunaga, S. Chiral carboxylic acid assisted enantioselective C-H activation with achiral CpXMIII (M = Co, Rh, Ir) catalysts. ACS Catal. 11, 6455–6466 (2021).

    Article  CAS  Google Scholar 

  35. Jacob, N., Zaid, Y., Oliveira, J. C. A., Ackermann, L. & Wencel-Delord, J. Cobalt-catalyzed enantioselective C-H arylation of indoles. J. Am. Chem. Soc. 144, 798–806 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Pesciaioli, F. et al. Enantioselective cobalt(III)-catalyzed C-H activation enabled by chiral carboxylic acid cooperation. Angew. Chem. Int. Ed. 57, 15425–15429 (2018).

    Article  CAS  Google Scholar 

  37. Fukagawa, S. et al. Cobalt(III)/chiral carboxylic acid-catalyzed enantioselective C(sp3)-H amidation of thioamides. Angew. Chem. Int. Ed. 58, 1153–1157 (2019).

    Article  CAS  Google Scholar 

  38. Sekine, D. et al. Chiral 2-aryl ferrocene carboxylic acids for the catalytic asymmetric C(sp3)-H activation of thioamides. Organometallics 38, 3921–3926 (2019).

    Article  CAS  Google Scholar 

  39. Liu, Y.-H. et al. Cp*Co(III)/MPAA-catalyzed enantioselective amidation of ferrocenes directed by thioamides under mild conditions. Org. Lett. 21, 1895–1899 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Kurihara, T., Kojima, M., Yoshino, T. & Matsunaga, S. Cp*CoIII/chiral carboxylic acid-catalyzed enantioselective 1,4-addition reactions of indoles to maleimides. Asian J. Org. Chem. 9, 368–371 (2020).

    Article  CAS  Google Scholar 

  41. Liu, Y.-H. et al. Cp*Co(III)-catalyzed enantioselective hydroarylation of unactivated terminal alkenes via C-H activation. J. Am. Chem. Soc. 143, 19112–19120 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Ozols, K., Jang, Y.-S. & Cramer, N. Chiral cyclopentadienyl cobalt(III) complexes enable highly enantioselective 3d-metal-catalyzed C-H functionalizations. J. Am. Chem. Soc. 141, 5675–5680 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Ozols, K., Onodera, S., Woz´niak, L. & Cramer, N. Cobalt(III)-catalyzed enantioselective intermolecular carboamination by C-H functionalization. Angew. Chem. Int. Ed. 60, 655–659 (2021).

    Article  CAS  Google Scholar 

  44. Herraiz, A. G. & Cramer, N. Cobalt(III)-catalyzed diastereo- and enantioselective three-component C-H functionalization. ACS Catal. 11, 11938–11944 (2021).

    Article  CAS  Google Scholar 

  45. Yuan, W.-K. & Shi, B.-F. Synthesis of chiral spirolactams via sequential C-H olefination/asymmetric [4 + 1] spirocyclization under a simple Co(II)/chiral spiro phosphoric acid binary system. Angew. Chem. Int. Ed. 60, 23187–23192 (2021).

    Article  CAS  Google Scholar 

  46. Yao, Q.-J., Chen, J.-H., Song, H., Huang, F.-R. & Shi, B.-F. Cobalt/Salox‐catalyzed enantioselective C-H functionalization of arylphosphinamides. Angew. Chem. Int. Ed. 134, e202202892 (2022).

    Google Scholar 

  47. Grigorjeva, L. & Daugulis, O. Cobalt-catalyzed, aminoquinoline-directed C(sp2)-H bond alkenylation by alkynes. Angew. Chem. Int. Ed. 53, 10209–10212 (2014).

    Article  CAS  Google Scholar 

  48. Zhang, L.-B. et al. Cobalt(II)-catalyzed Csp2-H alkynylation/annulation with terminal alkynes: selective access to 3-methyleneisoindolin-1-one. Angew. Chem. Int. Ed. 54, 10012–10015 (2015).

    Article  CAS  Google Scholar 

  49. Bao, X., Rodriguez, J. & Bonne, D. Enantioselective synthesis of atropisomers with multiple stereogenic axes. Angew. Chem. Int. Ed. 59, 12623–12634 (2020).

    Article  CAS  Google Scholar 

  50. Gao, Q. et al. Catalytic synthesis of atropisomeric o-terphenyls with 1,2-diaxes via axial-to-axial diastereoinduction. J. Am. Chem. Soc. 143, 7253–7260 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21772179 to J.-L.N.) and the Program for Science & Technology Innovation Talents in Universities of Henan Province (19HASTIT038 to J.-L.N.).

Author information

Authors and Affiliations

Authors

Contributions

J.-L.N., D.Y. and X.-J.S. conceived the concept and prepared the manuscript. X.-J.S., D.Y. and M.-C.S. conducted the experiments and analysed the data. D.W. performed the DFT study. M.-P.S. provided revisions. All authors participated in the discussion and preparation of the manuscript. J.-L.N. directed the project.

Corresponding author

Correspondence to Jun-Long Niu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Synthesis thanks Naohiko Yoshikai, Qianghui Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Thomas West, in collaboration with the Nature Synthesis team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Data 1

Crystallographic data for compound 3aa, CCDC 2121762

Supplementary Data 2

Crystallographic data for compound 3ar, CCDC 2129412

Supplementary Data 3

Crystallographic data for compound 3av-major, CCDC 2165266

Supplementary Data 4

Crystallographic data for compound 3av-minor, CCDC 2165270

Supplementary Data 5

Crystallographic data for compound 9, CCDC 2165271

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, XJ., Yang, D., Sun, MC. et al. Atroposelective isoquinolinone synthesis through cobalt-catalysed C–H activation and annulation. Nat. Synth 1, 709–718 (2022). https://doi.org/10.1038/s44160-022-00114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44160-022-00114-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing